TheAlgorithms-C-Plus-Plus/math/integral_approximation2.cpp

197 lines
6.9 KiB
C++
Raw Normal View History

/**
* @file
* @brief [Monte Carlo Integration](https://en.wikipedia.org/wiki/Monte_Carlo_integration)
*
* @details
* In mathematics, Monte Carlo integration is a technique for numerical integration using random numbers.
* It is a particular Monte Carlo method that numerically computes a definite integral.
* While other algorithms usually evaluate the integrand at a regular grid, Monte Carlo randomly chooses points at which the integrand is evaluated.
* This method is particularly useful for higher-dimensional integrals.
*
* This implementation supports arbitrary pdfs.
* These pdfs are sampled using the [Metropolis-Hastings algorithm](https://en.wikipedia.org/wiki/MetropolisHastings_algorithm).
* This can be swapped out by every other sampling techniques for example the inverse method.
* Metropolis-Hastings was chosen because it is the most general and can also be extended for a higher dimensional sampling space.
*
* @author [Domenic Zingsheim](https://github.com/DerAndereDomenic)
*/
#define _USE_MATH_DEFINES /// for M_PI on windows
#include <cmath> /// for math functions
#include <cstdint> /// for fixed size data types
#include <ctime> /// for time to initialize rng
#include <functional> /// for function pointers
#include <iostream> /// for std::cout
#include <random> /// for random number generation
#include <vector> /// for std::vector
/**
* @namespace math
* @brief Math algorithms
*/
namespace math {
/**
* @namespace monte_carlo
* @brief Functions for the [Monte Carlo Integration](https://en.wikipedia.org/wiki/Monte_Carlo_integration) implementation
*/
namespace monte_carlo {
using Function = std::function<double(double&)>; /// short-hand for std::functions used in this implementation
/**
* @brief Generate samples according to some pdf
* @details This function uses Metropolis-Hastings to generate random numbers. It generates a sequence of random numbers by using a markov chain.
* Therefore, we need to define a start_point and the number of samples we want to generate.
* Because the first samples generated by the markov chain may not be distributed according to the given pdf, one can specify how many samples
* should be discarded before storing samples.
* @param start_point The starting point of the markov chain
* @param pdf The pdf to sample
* @param num_samples The number of samples to generate
* @param discard How many samples should be discarded at the start
* @returns A vector of size num_samples with samples distributed according to the pdf
*/
std::vector<double> generate_samples(const double& start_point, const Function& pdf, const uint32_t& num_samples, const uint32_t& discard = 100000) {
std::vector<double> samples;
samples.reserve(num_samples);
double x_t = start_point;
std::default_random_engine generator;
std::uniform_real_distribution<double> uniform(0.0, 1.0);
std::normal_distribution<double> normal(0.0, 1.0);
generator.seed(time(nullptr));
for(uint32_t t = 0; t < num_samples + discard; ++t) {
// Generate a new proposal according to some mutation strategy.
// This is arbitrary and can be swapped.
double x_dash = normal(generator) + x_t;
double acceptance_probability = std::min(pdf(x_dash)/pdf(x_t), 1.0);
double u = uniform(generator);
// Accept "new state" according to the acceptance_probability
if(u <= acceptance_probability) {
x_t = x_dash;
}
if(t >= discard) {
samples.push_back(x_t);
}
}
return samples;
}
/**
* @brief Compute an approximation of an integral using Monte Carlo integration
* @details The integration domain [a,b] is given by the pdf.
* The pdf has to fulfill the following conditions:
* 1) for all x \in [a,b] : p(x) > 0
* 2) for all x \not\in [a,b] : p(x) = 0
* 3) \int_a^b p(x) dx = 1
* @param start_point The start point of the Markov Chain (see generate_samples)
* @param function The function to integrate
* @param pdf The pdf to sample
* @param num_samples The number of samples used to approximate the integral
* @returns The approximation of the integral according to 1/N \sum_{i}^N f(x_i) / p(x_i)
*/
double integral_monte_carlo(const double& start_point, const Function& function, const Function& pdf, const uint32_t& num_samples = 1000000) {
double integral = 0.0;
std::vector<double> samples = generate_samples(start_point, pdf, num_samples);
for(double sample : samples) {
integral += function(sample) / pdf(sample);
}
return integral / static_cast<double>(samples.size());
}
} // namespace monte_carlo
} // namespace math
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
std::cout << "Disclaimer: Because this is a randomized algorithm," << std::endl;
std::cout << "it may happen that singular samples deviate from the true result." << std::endl << std::endl;;
math::monte_carlo::Function f;
math::monte_carlo::Function pdf;
double integral = 0;
double lower_bound = 0, upper_bound = 0;
/* \int_{-2}^{2} -x^2 + 4 dx */
f = [&](double& x) {
return -x*x + 4.0;
};
lower_bound = -2.0;
upper_bound = 2.0;
pdf = [&](double& x) {
if(x >= lower_bound && x <= -1.0) {
return 0.1;
}
if(x <= upper_bound && x >= 1.0) {
return 0.1;
}
if(x > -1.0 && x < 1.0) {
return 0.4;
}
return 0.0;
};
integral = math::monte_carlo::integral_monte_carlo((upper_bound - lower_bound) / 2.0, f, pdf);
std::cout << "This number should be close to 10.666666: " << integral << std::endl;
/* \int_{0}^{1} e^x dx */
f = [&](double& x) {
return std::exp(x);
};
lower_bound = 0.0;
upper_bound = 1.0;
pdf = [&](double& x) {
if(x >= lower_bound && x <= 0.2) {
return 0.1;
}
if(x > 0.2 && x <= 0.4) {
return 0.4;
}
if(x > 0.4 && x < upper_bound) {
return 1.5;
}
return 0.0;
};
integral = math::monte_carlo::integral_monte_carlo((upper_bound - lower_bound) / 2.0, f, pdf);
std::cout << "This number should be close to 1.7182818: " << integral << std::endl;
/* \int_{-\infty}^{\infty} sinc(x) dx, sinc(x) = sin(pi * x) / (pi * x)
This is a difficult integral because of its infinite domain.
Therefore, it may deviate largely from the expected result.
*/
f = [&](double& x) {
return std::sin(M_PI * x) / (M_PI * x);
};
pdf = [&](double& x) {
return 1.0 / std::sqrt(2.0 * M_PI) * std::exp(-x * x / 2.0);
};
integral = math::monte_carlo::integral_monte_carlo(0.0, f, pdf, 10000000);
std::cout << "This number should be close to 1.0: " << integral << std::endl;
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
return 0;
}