mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
80 lines
2.1 KiB
C++
80 lines
2.1 KiB
C++
|
#include <iostream>
|
|||
|
#include <cstdlib>
|
|||
|
#include <cstdint>
|
|||
|
#include <cassert>
|
|||
|
#include <ctime>
|
|||
|
#include <cmath>
|
|||
|
|
|||
|
/*
|
|||
|
Program that computes a^b in O(logN) time.
|
|||
|
It is based on formula that:
|
|||
|
case1) if b is even: a^b = a^(b/2) * a^(b/2) = (a^(b/2))ˆ2
|
|||
|
case2) if b is odd: a^b = a^((b-1)/2) * a^((b-1)/2) * a = (a^((b-1)/2))^2 * a
|
|||
|
We can compute a^b recursively using above algorithm.
|
|||
|
*/
|
|||
|
|
|||
|
double fast_power_recursive(int64_t a, int64_t b) {
|
|||
|
// negative power. a^b = 1 / (a^-b)
|
|||
|
if (b < 0)
|
|||
|
return 1.0 / fast_power_recursive(a, -b);
|
|||
|
|
|||
|
if (b == 0) return 1;
|
|||
|
int64_t bottom = fast_power_recursive(a, b >> 1);
|
|||
|
// Since it is integer division b/2 = (b-1)/2 where b is odd.
|
|||
|
// Therefore, case2 is easily solved by integer division.
|
|||
|
|
|||
|
int64_t result;
|
|||
|
if ((b & 1) == 0) // case1
|
|||
|
result = bottom * bottom;
|
|||
|
else // case2
|
|||
|
result = bottom * bottom * a;
|
|||
|
return result;
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
Same algorithm with little different formula.
|
|||
|
It still calculates in O(logN)
|
|||
|
*/
|
|||
|
double fast_power_linear(int64_t a, int64_t b) {
|
|||
|
// negative power. a^b = 1 / (a^-b)
|
|||
|
if (b < 0)
|
|||
|
return 1.0 / fast_power_linear(a, -b);
|
|||
|
|
|||
|
double result = 1;
|
|||
|
while (b) {
|
|||
|
if (b & 1) result = result * a;
|
|||
|
a = a * a;
|
|||
|
b = b >> 1;
|
|||
|
}
|
|||
|
return result;
|
|||
|
}
|
|||
|
|
|||
|
int main() {
|
|||
|
std::srand(time(NULL));
|
|||
|
std::ios_base::sync_with_stdio(false);
|
|||
|
|
|||
|
std::cout << "Testing..." << std::endl;
|
|||
|
for (int i = 0; i < 20; i++) {
|
|||
|
unsigned int *rand1, *rand2;
|
|||
|
int a = rand_r(rand1) % 20 - 10;
|
|||
|
int b = rand_r(rand2) % 20 - 10;
|
|||
|
std::cout << std::endl << "Calculating " << a << "^" << b << std::endl;
|
|||
|
assert(fast_power_recursive(a, b) == std::pow(a, b));
|
|||
|
assert(fast_power_linear(a, b) == std::pow(a, b));
|
|||
|
|
|||
|
std::cout << "------ " << a << "^" << b << " = "<<
|
|||
|
fast_power_recursive(a, b) << std::endl;
|
|||
|
}
|
|||
|
|
|||
|
int64_t a, b;
|
|||
|
std::cin >> a >> b;
|
|||
|
|
|||
|
std::cout << a << "^" << b << " = "<<
|
|||
|
fast_power_recursive(a, b) << std::endl;
|
|||
|
|
|||
|
std::cout << a << "^" << b << " = "<<
|
|||
|
fast_power_linear(a, b) << std::endl;
|
|||
|
|
|||
|
return 0;
|
|||
|
}
|