mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
66 lines
1.6 KiB
C
66 lines
1.6 KiB
C
|
#pragma once
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <valarray>
|
||
|
#include <vector>
|
||
|
#ifdef _OPENMP
|
||
|
#include <omp.h>
|
||
|
#endif
|
||
|
|
||
|
/** Perform LU decomposition on matrix
|
||
|
* \param[in] A matrix to decompose
|
||
|
* \param[out] L output L matrix
|
||
|
* \param[out] U output U matrix
|
||
|
* \returns 0 if no errors
|
||
|
* \returns negative if error occurred
|
||
|
*/
|
||
|
template <typename T>
|
||
|
int lu_decomposition(const std::vector<std::valarray<T>> &A,
|
||
|
std::vector<std::valarray<double>> *L,
|
||
|
std::vector<std::valarray<double>> *U) {
|
||
|
int row, col, j;
|
||
|
int mat_size = A.size();
|
||
|
|
||
|
if (mat_size != A[0].size()) {
|
||
|
// check matrix is a square matrix
|
||
|
std::cerr << "Not a square matrix!\n";
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
// regularize each row
|
||
|
for (row = 0; row < mat_size; row++) {
|
||
|
// Upper triangular matrix
|
||
|
#ifdef _OPENMP
|
||
|
#pragma omp for
|
||
|
#endif
|
||
|
for (col = row; col < mat_size; col++) {
|
||
|
// Summation of L[i,j] * U[j,k]
|
||
|
double lu_sum = 0.;
|
||
|
for (j = 0; j < row; j++) lu_sum += L[0][row][j] * U[0][j][col];
|
||
|
|
||
|
// Evaluate U[i,k]
|
||
|
U[0][row][col] = A[row][col] - lu_sum;
|
||
|
}
|
||
|
|
||
|
// Lower triangular matrix
|
||
|
#ifdef _OPENMP
|
||
|
#pragma omp for
|
||
|
#endif
|
||
|
for (col = row; col < mat_size; col++) {
|
||
|
if (row == col) {
|
||
|
L[0][row][col] = 1.;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Summation of L[i,j] * U[j,k]
|
||
|
double lu_sum = 0.;
|
||
|
for (j = 0; j < row; j++) lu_sum += L[0][col][j] * U[0][j][row];
|
||
|
|
||
|
// Evaluate U[i,k]
|
||
|
L[0][col][row] = (A[col][row] - lu_sum) / U[0][row][row];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|