2020-03-29 19:48:49 +08:00
|
|
|
#include<bits/stdc++.h>
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
|
|
Euler Totient Function also know as phi function.
|
|
|
|
|
|
|
|
phi(n) = phi(p1^a1).phi(p2^a2)...
|
|
|
|
where p1, p2,... are prime factor of n.
|
|
|
|
|
|
|
|
3 Euler's Property:
|
|
|
|
1. phi(prime_no) = prime_no-1
|
|
|
|
2. phi(prime_no^k) = (prime_no^k - prime_no^(k-1))
|
|
|
|
3. phi(a,b) = phi(a). phi(b) where a and b are relative primes.
|
|
|
|
|
|
|
|
Applying this 3 property on the first equation.
|
|
|
|
phi(n) = n. (1-1/p1). (1-1/p2). ...
|
|
|
|
where p1,p2... are prime factors.
|
|
|
|
|
|
|
|
Hence Implementation in O(sqrt(n)).
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
2020-03-29 20:01:34 +08:00
|
|
|
int phiFunction(int n) {
|
|
|
|
int result = n;
|
|
|
|
for (ll i=2; i*i <= n; i++) {
|
|
|
|
if (n%i == 0) {
|
|
|
|
while (n%i == 0) {
|
|
|
|
n /= i;
|
2020-03-29 19:48:49 +08:00
|
|
|
}
|
2020-03-29 20:01:34 +08:00
|
|
|
result -= result/i;
|
2020-03-29 19:48:49 +08:00
|
|
|
}
|
|
|
|
}
|
2020-03-29 20:01:34 +08:00
|
|
|
if (n > 1) result -= result/n;
|
|
|
|
return result;
|
2020-03-29 19:48:49 +08:00
|
|
|
}
|
|
|
|
|
2020-03-29 19:56:45 +08:00
|
|
|
int main() {
|
2020-03-29 20:01:34 +08:00
|
|
|
int n;
|
|
|
|
cin >> n;
|
|
|
|
cout << phiFunction(n) << endl;
|
2020-03-29 19:48:49 +08:00
|
|
|
}
|