TheAlgorithms-C-Plus-Plus/math/eulers_totient_function.cpp

44 lines
857 B
C++
Raw Normal View History

2020-03-29 19:48:49 +08:00
#include<bits/stdc++.h>
using namespace std;
/**
Euler Totient Function also know as phi function.
phi(n) = phi(p1^a1).phi(p2^a2)...
where p1, p2,... are prime factor of n.
3 Euler's Property:
1. phi(prime_no) = prime_no-1
2. phi(prime_no^k) = (prime_no^k - prime_no^(k-1))
3. phi(a,b) = phi(a). phi(b) where a and b are relative primes.
Applying this 3 property on the first equation.
phi(n) = n. (1-1/p1). (1-1/p2). ...
where p1,p2... are prime factors.
Hence Implementation in O(sqrt(n)).
*/
2020-03-29 20:01:34 +08:00
int phiFunction(int n) {
int result = n;
for (ll i=2; i*i <= n; i++) {
if (n%i == 0) {
while (n%i == 0) {
n /= i;
2020-03-29 19:48:49 +08:00
}
2020-03-29 20:01:34 +08:00
result -= result/i;
2020-03-29 19:48:49 +08:00
}
}
2020-03-29 20:01:34 +08:00
if (n > 1) result -= result/n;
return result;
2020-03-29 19:48:49 +08:00
}
2020-03-29 19:56:45 +08:00
int main() {
2020-03-29 20:01:34 +08:00
int n;
cin >> n;
cout << phiFunction(n) << endl;
2020-03-29 19:48:49 +08:00
}