TheAlgorithms-C-Plus-Plus/numerical_methods/midpoint_integral_method.cpp

154 lines
6.4 KiB
C++
Raw Normal View History

2021-10-20 20:58:56 +08:00
/*!
2021-10-23 04:25:41 +08:00
* @file
* \brief A numerical method for easy [approximation of integrals](https://en.wikipedia.org/wiki/Midpoint_method)
2021-10-23 04:25:41 +08:00
* \details The idea is to split the interval into N of intervals and use as interpolation points the xi
2021-10-20 20:58:56 +08:00
* for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the
* first and last points of the interval of the integration [a, b].
*
* We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula:
* I = h * {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)}
*
* Arguments can be passed as parameters from the command line argv[1] = N, argv[2] = a, argv[3] = b.
* In this case if the default values N=16, a=1, b=3 are changed then the tests/assert are disabled.
*
2021-10-23 04:25:41 +08:00
* More info: [Link to wikipedia](https://en.wikipedia.org/wiki/Midpoint_method)
2021-10-20 20:58:56 +08:00
*
2021-10-23 04:25:41 +08:00
* @author [ggkogkou](https://github.com/ggkogkou)
2021-10-20 20:58:56 +08:00
*/
#include <iostream> /// for IO operations
#include <cmath> /// for math functions
#include <cassert> /// for assert
#include <cstdlib> /// for std::atof
#include <functional> /// for std::function
#include <map> /// for std::map container
2021-10-20 20:58:56 +08:00
2021-10-23 20:38:42 +08:00
/**
* @namespace numerical_methods
* @brief Numerical algorithms/methods
*/
namespace numerical_methods {
2021-10-20 20:58:56 +08:00
/**
* @namespace midpoint_rule
2021-10-23 04:25:41 +08:00
* \brief Contains the function of the midpoint method implementation
2021-10-20 20:58:56 +08:00
*/
2021-10-23 20:38:42 +08:00
namespace midpoint_rule {
/*!
* @fn double midpoint(const int N, const double h, const double a, const std::function<double (double)>& func)
* \brief Implement midpoint method
* @param N is the number of intervals
* @param h is the step
* @param a is x0
* @param func is the function that will be integrated
* @returns the result of the integration
*/
double midpoint(const int N, const double h, const double a, const std::function<double(double)> &func) {
std::map<int, double> data_table; // Contains the data points, key: i, value: f(xi)
double xi = a; // Initialize xi to the starting point x0 = a
2021-10-20 20:58:56 +08:00
2021-10-23 20:38:42 +08:00
// Create the data table
// Loop from x0 to xN-1
double temp;
for (int i = 0; i < N; i++) {
temp = func(xi + h / 2); // find f(xi+h/2)
data_table.insert(std::pair<int, double>(i, temp)); // add i and f(xi)
xi += h; // Get the next point xi for the next iteration
}
2021-10-20 20:58:56 +08:00
2021-10-23 20:38:42 +08:00
// Evaluate the integral.
// Remember: {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)}
double evaluate_integral = 0;
for (int i = 0; i < N; i++) evaluate_integral += data_table.at(i);
2021-10-20 20:58:56 +08:00
2021-10-23 20:38:42 +08:00
// Multiply by the coefficient h
evaluate_integral *= h;
2021-10-20 20:58:56 +08:00
2021-10-23 20:38:42 +08:00
// If the result calculated is nan, then the user has given wrong input interval.
assert(!std::isnan(evaluate_integral) &&
"The definite integral can't be evaluated. Check the validity of your input.\n");
// Else return
return evaluate_integral;
}
2021-10-20 20:58:56 +08:00
2021-10-23 20:38:42 +08:00
} // namespace midpoint_rule
} // namespace numerical_methods
2021-10-20 20:58:56 +08:00
/**
2021-10-23 04:25:41 +08:00
* \brief A function f(x) that will be used to test the method
2021-10-20 20:58:56 +08:00
* @param x The independent variable xi
* @returns the value of the dependent variable yi = f(xi)
*/
2021-10-23 04:25:41 +08:00
double f(double x){
return std::sqrt(x) + std::log(x);
}
/** @brief Another test function */
double g(double x){
return std::exp(-x) * (4 - std::pow(x, 2));
}
/** @brief Another test function */
double k(double x){
return std::sqrt(2*std::pow(x, 3)+3);
}
/** @brief Another test function */
double l(double x){
return x + std::log(2*x+1);
}
2021-10-20 20:58:56 +08:00
/**
2021-10-23 20:38:42 +08:00
* \brief Self-test implementations
2021-10-23 04:25:41 +08:00
* @param N is the number of intervals
* @param h is the step
* @param a is x0
* @param b is the end of the interval
2021-10-23 20:38:42 +08:00
* @param used_argv_parameters is 'true' if argv parameters are given and 'false' if not
2021-10-20 20:58:56 +08:00
*/
2021-10-23 04:25:41 +08:00
static void test(int N, double h, double a,double b, bool used_argv_parameters){
// Call midpoint() for each of the test functions f, g, k, l
// Assert with two decimal point precision
2021-10-23 20:38:42 +08:00
double result_f = numerical_methods::midpoint_rule::midpoint(N, h, a, f);
2021-10-23 04:25:41 +08:00
assert((used_argv_parameters || (result_f >= 4.09 && result_f <= 4.10)) && "The result of f(x) is wrong");
std::cout << "The result of integral f(x) on interval [" << a << ", " << b << "] is equal to: " << result_f << std::endl;
2021-10-23 20:38:42 +08:00
double result_g = numerical_methods::midpoint_rule::midpoint(N, h, a, g);
2021-10-23 04:25:41 +08:00
assert((used_argv_parameters || (result_g >= 0.27 && result_g <= 0.28)) && "The result of g(x) is wrong");
std::cout << "The result of integral g(x) on interval [" << a << ", " << b << "] is equal to: " << result_g << std::endl;
2021-10-23 20:38:42 +08:00
double result_k = numerical_methods::midpoint_rule::midpoint(N, h, a, k);
2021-10-23 04:25:41 +08:00
assert((used_argv_parameters || (result_k >= 9.06 && result_k <= 9.07)) && "The result of k(x) is wrong");
std::cout << "The result of integral k(x) on interval [" << a << ", " << b << "] is equal to: " << result_k << std::endl;
2021-10-23 20:38:42 +08:00
double result_l = numerical_methods::midpoint_rule::midpoint(N, h, a, l);
2021-10-23 04:25:41 +08:00
assert((used_argv_parameters || (result_l >= 7.16 && result_l <= 7.17)) && "The result of l(x) is wrong");
std::cout << "The result of integral l(x) on interval [" << a << ", " << b << "] is equal to: " << result_l << std::endl;
2021-10-20 20:58:56 +08:00
2021-10-23 04:25:41 +08:00
}
/** main function */
2021-10-20 20:58:56 +08:00
int main(int argc, char** argv){
int N = 16; /// Number of intervals to divide the integration interval. MUST BE EVEN
double a = 1, b = 3; /// Starting and ending point of the integration in the real axis
double h; /// Step, calculated by a, b and N
bool used_argv_parameters = false; // If argv parameters are used then the assert must be omitted for the tst cases
// Get user input (by the command line parameters or the console after displaying messages)
if(argc == 4){
N = std::atoi(argv[1]);
a = (double) std::atof(argv[2]);
b = (double) std::atof(argv[3]);
// Check if a<b else abort
assert(a < b && "a has to be less than b");
assert(N > 0 && "N has to be > 0");
if(N<4 || a!=1 || b!=3) used_argv_parameters = true;
std::cout << "You selected N=" << N << ", a=" << a << ", b=" << b << std::endl;
}
else
std::cout << "Default N=" << N << ", a=" << a << ", b=" << b << std::endl;
// Find the step
h = (b-a)/N;
2021-10-23 04:25:41 +08:00
test(N, h, a, b, used_argv_parameters); /// run self-test implementations
2021-10-20 20:58:56 +08:00
return 0;
}