TheAlgorithms-C-Plus-Plus/dynamic_programming/shortest_common_supersequence.cpp

180 lines
5.2 KiB
C++
Raw Normal View History

/**
* @file
* @brief SCS is a string Z which is the shortest supersequence of strings X and Y (may not be continuous in Z, but order is maintained).
*
* @details
* The idea is to use lookup table method as used in LCS.
* For example: example 1:-
* X: 'ABCXYZ', Y: 'ABZ' then Z will be 'ABCXYZ' (y is not continuous but in order)
*
* For example: example 2:-
* X: 'AGGTAB', Y: 'GXTXAYB' then Z will be 'AGGXTXAYB'
* @author [Ridhish Jain](https://github.com/ridhishjain)
* @see more on [SCS](https://en.wikipedia.org/wiki/Shortest_common_supersequence_problem)
* @see related problem [Leetcode](https://leetcode.com/problems/shortest-common-supersequence/)
*/
// header files
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <cassert>
/**
* @namespace dynamic_programming
* @brief Dynamic Programming algorithms
*/
namespace dynamic_programming {
/**
* @namespace shortest_common_supersequence
* @brief Shortest Common Super Sequence algorithm
*/
namespace shortest_common_supersequence {
/**
* Function implementing Shortest Common Super-Sequence algorithm using look-up table method.
* @param str1 first string 'X'
* @param str2 second string 'Y'
* @returns string 'Z', superSequence of X and Y
*/
std::string scs(const std::string &str1, const std::string &str2) {
// Edge cases
// If either str1 or str2 or both are empty
if(str1.empty() && str2.empty()) {
return "";
}
else if(str1.empty()) {
return str2;
}
else if(str2.empty()) {
return str1;
}
// creating lookup table
std::vector <std::vector <int>> lookup(str1.length() + 1, std::vector <int> (str2.length() + 1, 0));
for(int i=1; i <= str1.length(); i++) {
for(int j=1; j <= str2.length(); j++) {
if(str1[i-1] == str2[j-1]) {
lookup[i][j] = lookup[i-1][j-1] + 1;
}
else {
lookup[i][j] = std::max(lookup[i-1][j], lookup[i][j-1]);
}
}
}
// making supersequence
// i and j are initially pointed towards end of strings
// Super-sequence will be constructed backwards
int i=str1.length();
int j=str2.length();
std::string s;
while(i>0 && j>0) {
// If the characters at i and j of both strings are same
// We only need to add them once in s
if(str1[i-1] == str2[j-1]) {
s.push_back(str1[i-1]);
i--;
j--;
}
// otherwise we check lookup table for recurrences of characters
else {
if(lookup[i-1][j] > lookup[i][j-1]) {
s.push_back(str1[i-1]);
i--;
}
else {
s.push_back(str2[j-1]);
j--;
}
}
}
// copying remaining elements
// if j becomes 0 before i
while(i > 0) {
s.push_back(str1[i-1]);
i--;
}
// if i becomes 0 before j
while(j > 0) {
s.push_back(str2[j-1]);
j--;
}
// As the super sequence is constructd backwards
// reversing the string before returning gives us the correct output
reverse(s.begin(), s.end());
return s;
}
} // namespace shortest_common_supersequence
} // namespace dynamic_programming
/**
* Test Function
* @return void
*/
static void test() {
// custom input vector
std::vector <std::vector <std::string>> scsStrings {
{"ABCXYZ", "ABZ"},
{"ABZ", "ABCXYZ"},
{"AGGTAB", "GXTXAYB"},
{"X", "Y"},
};
// calculated output vector by scs function
std::vector <std::string> calculatedOutput(4, "");
int i=0;
for(auto & scsString : scsStrings) {
calculatedOutput[i] = dynamic_programming::shortest_common_supersequence::scs(
scsString[0], scsString[1]
);
i++;
}
// expected output vector acc to problem statement
std::vector <std::string> expectedOutput {
"ABCXYZ",
"ABCXYZ",
"AGGXTXAYB",
"XY"
};
// Testing implementation via assert function
// It will throw error if any of the expected test fails
// Else it will give nothing
for(int i=0; i < scsStrings.size(); i++) {
assert(expectedOutput[i] == calculatedOutput[i]);
}
std::cout << "All tests passed successfully!\n";
return;
}
/** Main function (driver code)*/
int main() {
// test for implementation
test();
// user input
std::string s1, s2;
std::cin >> s1;
std::cin >> s2;
std::string ans;
// user output
ans = dynamic_programming::shortest_common_supersequence::scs(s1, s2);
std::cout << ans;
return 0;
}