TheAlgorithms-C-Plus-Plus/search/ternary_search.cpp

118 lines
3.1 KiB
C++
Raw Normal View History

2017-12-24 01:30:49 +08:00
/*
* This is a divide and conquer algorithm.
* It does this by dividing the search space by 3 parts and
* using its property (usually monotonic property) to find
* the desired index.
2020-05-27 04:40:09 +08:00
*
2017-12-24 01:30:49 +08:00
* Time Complexity : O(log3 n)
* Space Complexity : O(1) (without the array)
*/
#include <iostream>
/*
2020-05-27 04:40:09 +08:00
* The absolutePrecision can be modified to fit preference but
2017-12-24 01:30:49 +08:00
* it is recommended to not go lower than 10 due to errors that
* may occur.
*
* The value of _target should be decided or can be decided later
* by using the variable of the function.
*/
#define _target 10
#define absolutePrecision 10
#define MAX 10000000
int N = 21;
2019-08-21 10:10:08 +08:00
int A[MAX] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 10};
2017-12-24 01:30:49 +08:00
/*
* get_input function is to receive input from standard IO
*/
2020-05-27 04:40:09 +08:00
void get_input() {
// TODO(christianbender): Get input from STDIO or write input to memory as
// done above.
2017-12-24 01:30:49 +08:00
}
/*
2020-05-27 04:40:09 +08:00
* This is the iterative method of the ternary search which returns the index of
* the element.
2017-12-24 01:30:49 +08:00
*/
2020-05-27 04:40:09 +08:00
int it_ternary_search(int left, int right, int A[], int target) {
while (1) {
if (left < right) {
if (right - left < absolutePrecision) {
for (int i = left; i <= right; i++)
if (A[i] == target) return i;
return -1;
}
int oneThird = (left + right) / 3 + 1;
int twoThird = (left + right) * 2 / 3 + 1;
if (A[oneThird] == target)
return oneThird;
else if (A[twoThird] == target)
return twoThird;
else if (target > A[twoThird])
left = twoThird + 1;
else if (target < A[oneThird])
right = oneThird - 1;
else
left = oneThird + 1, right = twoThird - 1;
} else {
return -1;
}
2017-12-24 01:30:49 +08:00
}
}
2020-05-27 04:40:09 +08:00
/*
* This is the recursive method of the ternary search which returns the index of
* the element.
2017-12-24 01:30:49 +08:00
*/
2020-05-27 04:40:09 +08:00
int rec_ternary_search(int left, int right, int A[], int target) {
if (left < right) {
if (right - left < absolutePrecision) {
for (int i = left; i <= right; i++)
if (A[i] == target) return i;
2019-08-21 10:10:08 +08:00
2020-05-27 04:40:09 +08:00
return -1;
}
2019-08-21 10:10:08 +08:00
2020-05-27 04:40:09 +08:00
int oneThird = (left + right) / 3 + 1;
int twoThird = (left + right) * 2 / 3 + 1;
2019-08-21 10:10:08 +08:00
2020-05-27 04:40:09 +08:00
if (A[oneThird] == target) return oneThird;
if (A[twoThird] == target) return twoThird;
2019-08-21 10:10:08 +08:00
2020-05-27 04:40:09 +08:00
if (target < A[oneThird])
return rec_ternary_search(left, oneThird - 1, A, target);
if (target > A[twoThird])
return rec_ternary_search(twoThird + 1, right, A, target);
return rec_ternary_search(oneThird + 1, twoThird - 1, A, target);
} else {
return -1;
}
2017-12-24 01:30:49 +08:00
}
/*
* ternary_search is a template function
2020-05-27 04:40:09 +08:00
* You could either use it_ternary_search or rec_ternary_search according to
* preference.
2017-12-24 01:30:49 +08:00
*/
2020-05-27 04:40:09 +08:00
void ternary_search(int N, int A[], int target) {
std::cout << it_ternary_search(0, N - 1, A, target) << '\t';
std::cout << rec_ternary_search(0, N - 1, A, target) << '\t';
std::cout << std::endl;
2017-12-24 01:30:49 +08:00
}
2020-05-27 04:40:09 +08:00
int main() {
get_input();
ternary_search(N, A, _target);
return 0;
2017-12-24 01:30:49 +08:00
}