mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
102 lines
3.1 KiB
C++
102 lines
3.1 KiB
C++
|
/**
|
||
|
* @file sparse_table.cpp
|
||
|
* @brief Implementation of [Sparse Table](https://en.wikipedia.org/wiki/Range_minimum_query) data structure
|
||
|
*
|
||
|
* @details
|
||
|
* Sparse Table is a data structure, that allows answering range queries.
|
||
|
* It can answer most range queries in O(logn), but its true power is answering range minimum queries
|
||
|
* or equivalent range maximum queries). For those queries it can compute the answer in O(1) time.
|
||
|
*
|
||
|
* * Running Time Complexity \n
|
||
|
* * Build : O(NlogN) \n
|
||
|
* * Range Query : O(1) \n
|
||
|
*/
|
||
|
|
||
|
#include <vector>
|
||
|
#include <cassert>
|
||
|
#include <iostream>
|
||
|
#include <algorithm>
|
||
|
|
||
|
/**
|
||
|
* @namespace range_queries
|
||
|
* @brief Range Queries algorithms
|
||
|
*/
|
||
|
namespace range_queries {
|
||
|
/**
|
||
|
* @namespace sparse_table
|
||
|
* @brief Range queries using sparse-tables
|
||
|
*/
|
||
|
namespace sparse_table {
|
||
|
/**
|
||
|
* This function precomputes intial log table for further use.
|
||
|
* @param n value of the size of the input array
|
||
|
* @return corresponding vector of the log table
|
||
|
*/
|
||
|
template<typename T>
|
||
|
std::vector<T> computeLogs(const std::vector<T>& A) {
|
||
|
int n = A.size();
|
||
|
std::vector<T> logs(n);
|
||
|
logs[1] = 0;
|
||
|
for (int i = 2 ; i < n ; i++) {
|
||
|
logs[i] = logs[i/2] + 1;
|
||
|
}
|
||
|
return logs;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This functions builds the primary data structure sparse table
|
||
|
* @param n value of the size of the input array
|
||
|
* @param A array of the input integers
|
||
|
* @param logs array of the log table
|
||
|
* @return created sparse table data structure
|
||
|
*/
|
||
|
template<typename T>
|
||
|
std::vector<std::vector<T> > buildTable(const std::vector<T>& A, const std::vector<T>& logs) {
|
||
|
int n = A.size();
|
||
|
std::vector<std::vector<T> > table(20, std::vector<T>(n+5, 0));
|
||
|
int curLen = 0;
|
||
|
for (int i = 0 ; i <= logs[n] ; i++) {
|
||
|
curLen = 1 << i;
|
||
|
for (int j = 0 ; j + curLen < n ; j++) {
|
||
|
if (curLen == 1) {
|
||
|
table[i][j] = A[j];
|
||
|
}
|
||
|
else {
|
||
|
table[i][j] = std::min(table[i-1][j], table[i-1][j + curLen/2]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return table;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This function is the query function to get the range minimum value
|
||
|
* @param beg beginning index of the query range
|
||
|
* @param end ending index of the query range
|
||
|
* @param logs array of the log table
|
||
|
* @param table sparse table data structure for the input array
|
||
|
* @return minimum value for the [beg, end] range for the input array
|
||
|
*/
|
||
|
template<typename T>
|
||
|
int getMinimum(int beg, int end, const std::vector<T>& logs, const std::vector<std::vector<T> >& table) {
|
||
|
int p = logs[end - beg + 1];
|
||
|
int pLen = 1 << p;
|
||
|
return std::min(table[p][beg], table[p][end - pLen + 1]);
|
||
|
}
|
||
|
}
|
||
|
} // namespace range_queries
|
||
|
|
||
|
/**
|
||
|
* Main function
|
||
|
*/
|
||
|
int main() {
|
||
|
std::vector<int> A{1, 2, 0, 3, 9};
|
||
|
std::vector<int> logs = range_queries::sparse_table::computeLogs(A);
|
||
|
std::vector<std::vector<int> > table = range_queries::sparse_table::buildTable(A, logs);
|
||
|
assert(range_queries::sparse_table::getMinimum(0, 0, logs, table) == 1);
|
||
|
assert(range_queries::sparse_table::getMinimum(0, 4, logs, table) == 0);
|
||
|
assert(range_queries::sparse_table::getMinimum(2, 4, logs, table) == 0);
|
||
|
return 0;
|
||
|
}
|
||
|
|