TheAlgorithms-C-Plus-Plus/hashing/sha1.cpp

307 lines
10 KiB
C++
Raw Normal View History

/**
* @file
* @author [tGautot](https://github.com/tGautot)
* @brief Simple C++ implementation of the [SHA-1 Hashing
* Algorithm](https://en.wikipedia.org/wiki/SHA-1)
*
* @details
* [SHA-1](https://en.wikipedia.org/wiki/SHA-1) is a cryptographic hash function
* that was developped by the
* [NSA](https://en.wikipedia.org/wiki/National_Security_Agency) 1995.
* SHA-1 is not considered secure since around 2010.
*
* ### Algorithm
* The first step of the algorithm is to pad the message for its length to
* be a multiple of 64 (bytes). This is done by first adding 0x80 (10000000)
* and then only zeroes until the last 8 bytes must be filled, where then the
* 64 bit size of the input will be added
*
* Once this is done, the algo breaks down this padded message
* into 64 bytes chunks. Each chunk is used for one *round*, a round
* breaks the chunk into 16 blocks of 4 bytes. These 16 blocks are then extended
* to 80 blocks using XOR operations on existing blocks (see code for more
* details). The algorithm will then update its 160-bit state (here represented
* used 5 32-bits integer) using partial hashes computed using special functions
* on the blocks previously built. Please take a look at the [wikipedia
* article](https://en.wikipedia.org/wiki/SHA-1#SHA-1_pseudocode) for more
* precision on these operations
* @note This is a simple implementation for a byte string but
* some implmenetations can work on bytestream, messages of unknown length.
*/
#include <algorithm> /// For std::copy
#include <array> /// For std::array
#include <cassert> /// For assert
#include <cstring> /// For std::memcopy
#include <iostream> /// For IO operations
#include <string> /// For strings
#include <vector> /// For std::vector
/**
* @namespace hashing
* @brief Hashing algorithms
*/
namespace hashing {
/**
* @namespace SHA-1
* @brief Functions for the [SHA-1](https://en.wikipedia.org/wiki/SHA-1)
* algorithm implementation
*/
namespace sha1 {
/**
* @brief Rotates the bits of a 32-bit unsigned integer
* @param n Integer to rotate
* @param rotate How many bits for the rotation
* @return uint32_t The rotated integer
*/
uint32_t leftRotate32bits(uint32_t n, std::size_t rotate) {
return (n << rotate) | (n >> (32 - rotate));
}
/**
* @brief Transforms the 160-bit SHA-1 signature into a 40 char hex string
* @param sig The SHA-1 signature (Expected 20 bytes)
* @return std::string The hex signature
*/
std::string sig2hex(void* sig) {
const char* hexChars = "0123456789abcdef";
auto* intsig = static_cast<uint8_t*>(sig);
std::string hex = "";
for (uint8_t i = 0; i < 20; i++) {
hex.push_back(hexChars[(intsig[i] >> 4) & 0xF]);
hex.push_back(hexChars[(intsig[i]) & 0xF]);
}
return hex;
}
/**
* @brief The SHA-1 algorithm itself, taking in a bytestring
* @param input_bs The bytestring to hash
* @param input_size The size (in BYTES) of the input
* @return void* Pointer to the 160-bit signature
*/
void* hash_bs(const void* input_bs, uint64_t input_size) {
auto* input = static_cast<const uint8_t*>(input_bs);
// Step 0: The initial 160-bit state
uint32_t h0 = 0x67452301, a = 0;
uint32_t h1 = 0xEFCDAB89, b = 0;
uint32_t h2 = 0x98BADCFE, c = 0;
uint32_t h3 = 0x10325476, d = 0;
uint32_t h4 = 0xC3D2E1F0, e = 0;
// Step 1: Processing the bytestring
// First compute the size the padded message will have
// so it is possible to allocate the right amount of memory
uint64_t padded_message_size = 0;
if (input_size % 64 < 56) {
padded_message_size = input_size + 64 - (input_size % 64);
} else {
padded_message_size = input_size + 128 - (input_size % 64);
}
// Allocate the memory for the padded message
std::vector<uint8_t> padded_message(padded_message_size);
// Beginning of the padded message is the original message
std::copy(input, input + input_size, padded_message.begin());
// Afterwards comes a single 1 bit and then only zeroes
padded_message[input_size] = 1 << 7; // 10000000
for (uint64_t i = input_size; i % 64 != 56; i++) {
if (i == input_size) {
continue; // pass first iteration
}
padded_message[i] = 0;
}
// We then have to add the 64-bit size of the message in bits (hence the
// times 8) in the last 8 bytes
uint64_t input_bitsize = input_size * 8;
for (uint8_t i = 0; i < 8; i++) {
padded_message[padded_message_size - 8 + i] =
(input_bitsize >> (56 - 8 * i)) & 0xFF;
}
// Already allocate memory for blocks
std::array<uint32_t, 80> blocks{};
// Rounds
for (uint64_t chunk = 0; chunk * 64 < padded_message_size; chunk++) {
// First, build 16 32-bits blocks from the chunk
for (uint8_t bid = 0; bid < 16; bid++) {
blocks[bid] = 0;
// Having to build a 32-bit word from 4-bit words
// Add each and shift them to the left
for (uint8_t cid = 0; cid < 4; cid++) {
blocks[bid] = (blocks[bid] << 8) +
padded_message[chunk * 64 + bid * 4 + cid];
}
// Extend the 16 32-bit words into 80 32-bit words
for (uint8_t i = 16; i < 80; i++) {
blocks[i] =
leftRotate32bits(blocks[i - 3] ^ blocks[i - 8] ^
blocks[i - 14] ^ blocks[i - 16],
1);
}
}
a = h0;
b = h1;
c = h2;
d = h3;
e = h4;
// Main "hashing" loop
for (uint8_t i = 0; i < 80; i++) {
uint32_t F = 0, g = 0;
if (i < 20) {
F = (b & c) | ((~b) & d);
g = 0x5A827999;
} else if (i < 40) {
F = b ^ c ^ d;
g = 0x6ED9EBA1;
} else if (i < 60) {
F = (b & c) | (b & d) | (c & d);
g = 0x8F1BBCDC;
} else {
F = b ^ c ^ d;
g = 0xCA62C1D6;
}
// Update the accumulators
uint32_t temp = leftRotate32bits(a, 5) + F + e + g + blocks[i];
e = d;
d = c;
c = leftRotate32bits(b, 30);
b = a;
a = temp;
}
// Update the state with this chunk's hash
h0 += a;
h1 += b;
h2 += c;
h3 += d;
h4 += e;
}
// Build signature from state
// Note, any type could be used for the signature
// uint8_t was used to make the 20 bytes obvious
auto* sig = new uint8_t[20];
for (uint8_t i = 0; i < 4; i++) {
sig[i] = (h0 >> (24 - 8 * i)) & 0xFF;
sig[i + 4] = (h1 >> (24 - 8 * i)) & 0xFF;
sig[i + 8] = (h2 >> (24 - 8 * i)) & 0xFF;
sig[i + 12] = (h3 >> (24 - 8 * i)) & 0xFF;
sig[i + 16] = (h4 >> (24 - 8 * i)) & 0xFF;
}
return sig;
}
/**
* @brief Converts the string to bytestring and calls the main algorithm
* @param message Plain character message to hash
* @return void* Pointer to the SHA-1 signature
*/
void* hash(const std::string& message) {
return hash_bs(&message[0], message.size());
}
} // namespace sha1
} // namespace hashing
/**
* @brief Self-test implementations of well-known SHA-1 hashes
* @returns void
*/
static void test() {
// Hashes empty string and stores signature
void* sig = hashing::sha1::hash("");
std::cout << "Hashing empty string" << std::endl;
// Prints signature hex representation
std::cout << hashing::sha1::sig2hex(sig) << std::endl << std::endl;
// Test with cassert wether sig is correct from expected value
assert(hashing::sha1::sig2hex(sig).compare(
"da39a3ee5e6b4b0d3255bfef95601890afd80709") == 0);
// Hashes "The quick brown fox jumps over the lazy dog" and stores signature
void* sig2 =
hashing::sha1::hash("The quick brown fox jumps over the lazy dog");
std::cout << "Hashing The quick brown fox jumps over the lazy dog"
<< std::endl;
// Prints signature hex representation
std::cout << hashing::sha1::sig2hex(sig2) << std::endl << std::endl;
// Test with cassert wether sig is correct from expected value
assert(hashing::sha1::sig2hex(sig2).compare(
"2fd4e1c67a2d28fced849ee1bb76e7391b93eb12") == 0);
// Hashes "The quick brown fox jumps over the lazy dog." (notice the
// additional period) and stores signature
void* sig3 =
hashing::sha1::hash("The quick brown fox jumps over the lazy dog.");
std::cout << "Hashing "
"The quick brown fox jumps over the lazy dog."
<< std::endl;
// Prints signature hex representation
std::cout << hashing::sha1::sig2hex(sig3) << std::endl << std::endl;
// Test with cassert wether sig is correct from expected value
assert(hashing::sha1::sig2hex(sig3).compare(
"408d94384216f890ff7a0c3528e8bed1e0b01621") == 0);
// Hashes "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
// and stores signature
void* sig4 = hashing::sha1::hash(
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789");
std::cout
<< "Hashing "
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
<< std::endl;
// Prints signature hex representation
std::cout << hashing::sha1::sig2hex(sig4) << std::endl << std::endl;
// Test with cassert wether sig is correct from expected value
assert(hashing::sha1::sig2hex(sig4).compare(
"761c457bf73b14d27e9e9265c46f4b4dda11f940") == 0);
}
/**
* @brief Puts user in a loop where inputs can be given and SHA-1 hash will be
* computed and printed
* @returns void
*/
static void interactive() {
while (true) {
std::string input;
std::cout << "Enter a message to be hashed (Ctrl-C to exit): "
<< std::endl;
std::getline(std::cin, input);
void* sig = hashing::sha1::hash(input);
std::cout << "Hash is: " << hashing::sha1::sig2hex(sig) << std::endl;
while (true) {
std::cout << "Want to enter another message? (y/n) ";
std::getline(std::cin, input);
if (input.compare("y") == 0) {
break;
} else if (input.compare("n") == 0) {
return;
}
}
}
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
// Launch interactive mode where user can input messages and see
// their hash
interactive();
return 0;
}