TheAlgorithms-C-Plus-Plus/math/fast_power.cpp

80 lines
2.1 KiB
C++
Raw Normal View History

#include <iostream>
#include <cstdlib>
#include <cstdint>
#include <cassert>
#include <ctime>
#include <cmath>
/*
Program that computes a^b in O(logN) time.
It is based on formula that:
case1) if b is even: a^b = a^(b/2) * a^(b/2) = (a^(b/2))ˆ2
case2) if b is odd: a^b = a^((b-1)/2) * a^((b-1)/2) * a = (a^((b-1)/2))^2 * a
We can compute a^b recursively using above algorithm.
*/
double fast_power_recursive(int64_t a, int64_t b) {
// negative power. a^b = 1 / (a^-b)
if (b < 0)
return 1.0 / fast_power_recursive(a, -b);
if (b == 0) return 1;
int64_t bottom = fast_power_recursive(a, b >> 1);
// Since it is integer division b/2 = (b-1)/2 where b is odd.
// Therefore, case2 is easily solved by integer division.
int64_t result;
if ((b & 1) == 0) // case1
result = bottom * bottom;
else // case2
result = bottom * bottom * a;
return result;
}
/*
Same algorithm with little different formula.
It still calculates in O(logN)
*/
double fast_power_linear(int64_t a, int64_t b) {
// negative power. a^b = 1 / (a^-b)
if (b < 0)
return 1.0 / fast_power_linear(a, -b);
double result = 1;
while (b) {
if (b & 1) result = result * a;
a = a * a;
b = b >> 1;
}
return result;
}
int main() {
std::srand(time(NULL));
std::ios_base::sync_with_stdio(false);
std::cout << "Testing..." << std::endl;
for (int i = 0; i < 20; i++) {
unsigned int *rand1, *rand2;
int a = rand_r(rand1) % 20 - 10;
int b = rand_r(rand2) % 20 - 10;
std::cout << std::endl << "Calculating " << a << "^" << b << std::endl;
assert(fast_power_recursive(a, b) == std::pow(a, b));
assert(fast_power_linear(a, b) == std::pow(a, b));
std::cout << "------ " << a << "^" << b << " = "<<
fast_power_recursive(a, b) << std::endl;
}
int64_t a, b;
std::cin >> a >> b;
std::cout << a << "^" << b << " = "<<
fast_power_recursive(a, b) << std::endl;
std::cout << a << "^" << b << " = "<<
fast_power_linear(a, b) << std::endl;
return 0;
}