mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
Merge branch 'master' into strassen-multiplication
This commit is contained in:
commit
0545555a7f
@ -20,6 +20,7 @@
|
||||
* [Find Non Repeating Number](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/bit_manipulation/find_non_repeating_number.cpp)
|
||||
* [Hamming Distance](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/bit_manipulation/hamming_distance.cpp)
|
||||
* [Set Kth Bit](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/bit_manipulation/set_kth_bit.cpp)
|
||||
* [Travelling Salesman Using Bit Manipulation](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/bit_manipulation/travelling_salesman_using_bit_manipulation.cpp)
|
||||
|
||||
## Ciphers
|
||||
* [A1Z26 Cipher](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/ciphers/a1z26_cipher.cpp)
|
||||
@ -66,7 +67,7 @@
|
||||
* [Reverse A Linked List](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/data_structures/reverse_a_linked_list.cpp)
|
||||
* [Skip List](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/data_structures/skip_list.cpp)
|
||||
* [Sparse Table](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/data_structures/sparse_table.cpp)
|
||||
* [Stack](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/data_structures/stack.h)
|
||||
* [Stack](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/data_structures/stack.hpp)
|
||||
* [Stack Using Array](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/data_structures/stack_using_array.cpp)
|
||||
* [Stack Using Linked List](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/data_structures/stack_using_linked_list.cpp)
|
||||
* [Stack Using Queue](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/data_structures/stack_using_queue.cpp)
|
||||
|
119
bit_manipulation/travelling_salesman_using_bit_manipulation.cpp
Normal file
119
bit_manipulation/travelling_salesman_using_bit_manipulation.cpp
Normal file
@ -0,0 +1,119 @@
|
||||
/**
|
||||
* @file
|
||||
* @brief Implementation to
|
||||
* [Travelling Salesman problem using bit-masking]
|
||||
* (https://www.geeksforgeeks.org/travelling-salesman-problem-set-1/)
|
||||
*
|
||||
* @details
|
||||
* Given the distance/cost(as and adjacency matrix) between each city/node to the other city/node ,
|
||||
* the problem is to find the shortest possible route that visits every city exactly once
|
||||
* and returns to the starting point or we can say the minimum cost of whole tour.
|
||||
*
|
||||
* Explanation:
|
||||
* INPUT -> You are given with a adjacency matrix A = {} which contains the distance between two cities/node.
|
||||
*
|
||||
* OUTPUT -> Minimum cost of whole tour from starting point
|
||||
*
|
||||
* Worst Case Time Complexity: O(n^2 * 2^n)
|
||||
* Space complexity: O(n)
|
||||
* @author [Utkarsh Yadav](https://github.com/Rytnix)
|
||||
*/
|
||||
#include <algorithm> /// for std::min
|
||||
#include <cassert> /// for assert
|
||||
#include <iostream> /// for IO operations
|
||||
#include <vector> /// for std::vector
|
||||
#include <limits> /// for limits of integral types
|
||||
|
||||
/**
|
||||
* @namespace bit_manipulation
|
||||
* @brief Bit manipulation algorithms
|
||||
*/
|
||||
namespace bit_manipulation {
|
||||
/**
|
||||
* @namespace travellingSalesman_bitmanipulation
|
||||
* @brief Functions for the [Travelling Salesman
|
||||
* Bitmask](https://www.geeksforgeeks.org/travelling-salesman-problem-set-1/)
|
||||
* implementation
|
||||
*/
|
||||
namespace travelling_salesman_using_bit_manipulation {
|
||||
/**
|
||||
* @brief The function implements travellingSalesman using bitmanipulation
|
||||
* @param dist is the cost to reach between two cities/nodes
|
||||
* @param setOfCitites represents the city in bit form.\
|
||||
* @param city is taken to track the current city movement.
|
||||
* @param n is the no of citys .
|
||||
* @param dp vector is used to keep a record of state to avoid the recomputation.
|
||||
* @returns minimum cost of traversing whole nodes/cities from starting point back to starting point
|
||||
*/
|
||||
std::uint64_t travelling_salesman_using_bit_manipulation(std::vector<std::vector<uint32_t>> dist, // dist is the adjacency matrix containing the distance.
|
||||
// setOfCities as a bit represent the cities/nodes. Ex: if setOfCities = 2 => 0010(in binary)
|
||||
// means representing the city/node B if city/nodes are represented as D->C->B->A.
|
||||
std::uint64_t setOfCities,
|
||||
std::uint64_t city, // city is taken to track our current city/node movement,where we are currently.
|
||||
std::uint64_t n, // n is the no of cities we have.
|
||||
std::vector<std::vector<uint32_t>> &dp) //dp is taken to memorize the state to avoid recomputition
|
||||
{
|
||||
//base case;
|
||||
if (setOfCities == (1 << n) - 1) // we have covered all the cities
|
||||
return dist[city][0]; //return the cost from the current city to the original city.
|
||||
|
||||
if (dp[setOfCities][city] != -1)
|
||||
return dp[setOfCities][city];
|
||||
//otherwise try all possible options
|
||||
uint64_t ans = 2147483647 ;
|
||||
for (int choice = 0; choice < n; choice++) {
|
||||
//check if the city is visited or not.
|
||||
if ((setOfCities & (1 << choice)) == 0 ) { // this means that this perticular city is not visited.
|
||||
std::uint64_t subProb = dist[city][choice] + travelling_salesman_using_bit_manipulation(dist, setOfCities | (1 << choice), choice, n, dp);
|
||||
// Here we are doing a recursive call to tsp with the updated set of city/node
|
||||
// and choice which tells that where we are currently.
|
||||
ans = std::min(ans, subProb);
|
||||
}
|
||||
|
||||
}
|
||||
dp[setOfCities][city] = ans;
|
||||
return ans;
|
||||
}
|
||||
} // namespace travelling_salesman_using_bit_manipulation
|
||||
} // namespace bit_manipulation
|
||||
|
||||
/**
|
||||
* @brief Self-test implementations
|
||||
* @returns void
|
||||
*/
|
||||
static void test() {
|
||||
// 1st test-case
|
||||
std::vector<std::vector<uint32_t>> dist = {
|
||||
{0, 20, 42, 35}, {20, 0, 30, 34}, {42, 30, 0, 12}, {35, 34, 12, 0}
|
||||
};
|
||||
uint32_t V = dist.size();
|
||||
std::vector<std::vector<uint32_t>> dp(1 << V, std::vector<uint32_t>(V, -1));
|
||||
assert(bit_manipulation::travelling_salesman_using_bit_manipulation::travelling_salesman_using_bit_manipulation(dist, 1, 0, V, dp) == 97);
|
||||
std::cout << "1st test-case: passed!" << "\n";
|
||||
|
||||
// 2nd test-case
|
||||
dist = {{0, 5, 10, 15}, {5, 0, 20, 30}, {10, 20, 0, 35}, {15, 30, 35, 0}};
|
||||
V = dist.size();
|
||||
std::vector<std::vector<uint32_t>> dp1(1 << V, std::vector<uint32_t>(V, -1));
|
||||
assert(bit_manipulation::travelling_salesman_using_bit_manipulation::travelling_salesman_using_bit_manipulation(dist, 1, 0, V, dp1) == 75);
|
||||
std::cout << "2nd test-case: passed!" << "\n";
|
||||
// 3rd test-case
|
||||
dist = {
|
||||
{0, 10, 15, 20}, {10, 0, 35, 25}, {15, 35, 0, 30}, {20, 25, 30, 0}
|
||||
};
|
||||
V = dist.size();
|
||||
std::vector<std::vector<uint32_t>> dp2(1 << V, std::vector<uint32_t>(V, -1));
|
||||
assert(bit_manipulation::travelling_salesman_using_bit_manipulation::travelling_salesman_using_bit_manipulation(dist, 1, 0, V, dp2) == 80);
|
||||
|
||||
std::cout << "3rd test-case: passed!" << "\n";
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main() {
|
||||
test(); // run self-test implementations
|
||||
return 0;
|
||||
}
|
@ -1,150 +0,0 @@
|
||||
/**
|
||||
* @file stack.h
|
||||
* @author danghai
|
||||
* @brief This class specifies the basic operation on a stack as a linked list
|
||||
**/
|
||||
#ifndef DATA_STRUCTURES_STACK_H_
|
||||
#define DATA_STRUCTURES_STACK_H_
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
/** Definition of the node as a linked-list
|
||||
* \tparam Type type of data nodes of the linked list should contain
|
||||
*/
|
||||
template <class Type>
|
||||
struct node {
|
||||
Type data; ///< data at current node
|
||||
node<Type> *next; ///< pointer to the next ::node instance
|
||||
};
|
||||
|
||||
/** Definition of the stack class
|
||||
* \tparam Type type of data nodes of the linked list in the stack should
|
||||
* contain
|
||||
*/
|
||||
template <class Type>
|
||||
class stack {
|
||||
public:
|
||||
/** Show stack */
|
||||
void display() {
|
||||
node<Type> *current = stackTop;
|
||||
std::cout << "Top --> ";
|
||||
while (current != nullptr) {
|
||||
std::cout << current->data << " ";
|
||||
current = current->next;
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << "Size of stack: " << size << std::endl;
|
||||
}
|
||||
|
||||
/** Default constructor*/
|
||||
stack() {
|
||||
stackTop = nullptr;
|
||||
size = 0;
|
||||
}
|
||||
|
||||
/** Copy constructor*/
|
||||
explicit stack(const stack<Type> &otherStack) {
|
||||
node<Type> *newNode, *current, *last;
|
||||
|
||||
/* If stack is no empty, make it empty */
|
||||
if (stackTop != nullptr) {
|
||||
stackTop = nullptr;
|
||||
}
|
||||
if (otherStack.stackTop == nullptr) {
|
||||
stackTop = nullptr;
|
||||
} else {
|
||||
current = otherStack.stackTop;
|
||||
stackTop = new node<Type>;
|
||||
stackTop->data = current->data;
|
||||
stackTop->next = nullptr;
|
||||
last = stackTop;
|
||||
current = current->next;
|
||||
/* Copy the remaining stack */
|
||||
while (current != nullptr) {
|
||||
newNode = new node<Type>;
|
||||
newNode->data = current->data;
|
||||
newNode->next = nullptr;
|
||||
last->next = newNode;
|
||||
last = newNode;
|
||||
current = current->next;
|
||||
}
|
||||
}
|
||||
size = otherStack.size;
|
||||
}
|
||||
|
||||
/** Destructor */
|
||||
~stack() {}
|
||||
|
||||
/** Determine whether the stack is empty */
|
||||
bool isEmptyStack() { return (stackTop == nullptr); }
|
||||
|
||||
/** Add new item to the stack */
|
||||
void push(Type item) {
|
||||
node<Type> *newNode;
|
||||
newNode = new node<Type>;
|
||||
newNode->data = item;
|
||||
newNode->next = stackTop;
|
||||
stackTop = newNode;
|
||||
size++;
|
||||
}
|
||||
|
||||
/** Return the top element of the stack */
|
||||
Type top() {
|
||||
assert(stackTop != nullptr);
|
||||
return stackTop->data;
|
||||
}
|
||||
|
||||
/** Remove the top element of the stack */
|
||||
void pop() {
|
||||
node<Type> *temp;
|
||||
if (!isEmptyStack()) {
|
||||
temp = stackTop;
|
||||
stackTop = stackTop->next;
|
||||
delete temp;
|
||||
size--;
|
||||
} else {
|
||||
std::cout << "Stack is empty !" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
/** Clear stack */
|
||||
void clear() { stackTop = nullptr; }
|
||||
|
||||
/** Overload "=" the assignment operator */
|
||||
stack<Type> &operator=(const stack<Type> &otherStack) {
|
||||
node<Type> *newNode, *current, *last;
|
||||
|
||||
/* If stack is no empty, make it empty */
|
||||
if (stackTop != nullptr) {
|
||||
stackTop = nullptr;
|
||||
}
|
||||
if (otherStack.stackTop == nullptr) {
|
||||
stackTop = nullptr;
|
||||
} else {
|
||||
current = otherStack.stackTop;
|
||||
stackTop = new node<Type>;
|
||||
stackTop->data = current->data;
|
||||
stackTop->next = nullptr;
|
||||
last = stackTop;
|
||||
current = current->next;
|
||||
/* Copy the remaining stack */
|
||||
while (current != nullptr) {
|
||||
newNode = new node<Type>;
|
||||
newNode->data = current->data;
|
||||
newNode->next = nullptr;
|
||||
last->next = newNode;
|
||||
last = newNode;
|
||||
current = current->next;
|
||||
}
|
||||
}
|
||||
size = otherStack.size;
|
||||
return *this;
|
||||
}
|
||||
|
||||
private:
|
||||
node<Type> *stackTop; /**< Pointer to the stack */
|
||||
int size; ///< size of stack
|
||||
};
|
||||
|
||||
#endif // DATA_STRUCTURES_STACK_H_
|
106
data_structures/stack.hpp
Normal file
106
data_structures/stack.hpp
Normal file
@ -0,0 +1,106 @@
|
||||
/**
|
||||
* @file
|
||||
* @author danghai
|
||||
* @author [Piotr Idzik](https://github.com/vil02)
|
||||
* @brief This class specifies the basic operation on a stack as a linked list
|
||||
**/
|
||||
#ifndef DATA_STRUCTURES_STACK_HPP_
|
||||
#define DATA_STRUCTURES_STACK_HPP_
|
||||
|
||||
#include <iostream> /// for IO operations
|
||||
#include <memory> /// for std::shared_ptr
|
||||
#include <stdexcept> /// for std::invalid_argument
|
||||
#include <vector> /// for std::vector
|
||||
|
||||
/** Definition of the node as a linked-list
|
||||
* \tparam ValueType type of data nodes of the linked list should contain
|
||||
*/
|
||||
template <class ValueType>
|
||||
struct node {
|
||||
ValueType data = {}; ///< data at current node
|
||||
std::shared_ptr<node<ValueType>> next =
|
||||
{}; ///< pointer to the next ::node instance
|
||||
};
|
||||
|
||||
template <typename Node, typename Action>
|
||||
void traverse(const Node* const inNode, const Action& action) {
|
||||
if (inNode) {
|
||||
action(*inNode);
|
||||
traverse(inNode->next.get(), action);
|
||||
}
|
||||
}
|
||||
|
||||
/** Definition of the stack class
|
||||
* \tparam value_type type of data nodes of the linked list in the stack should
|
||||
* contain
|
||||
*/
|
||||
template <class ValueType>
|
||||
class stack {
|
||||
public:
|
||||
using value_type = ValueType;
|
||||
|
||||
/** Show stack */
|
||||
void display() const {
|
||||
std::cout << "Top --> ";
|
||||
traverse(stackTop.get(), [](const node<value_type>& inNode) {
|
||||
std::cout << inNode.data << " ";
|
||||
});
|
||||
std::cout << std::endl;
|
||||
std::cout << "Size of stack: " << size << std::endl;
|
||||
}
|
||||
|
||||
std::vector<value_type> toVector() const {
|
||||
std::vector<value_type> res;
|
||||
res.reserve(this->size);
|
||||
traverse(stackTop.get(), [&res](const node<value_type>& inNode) {
|
||||
res.push_back(inNode.data);
|
||||
});
|
||||
return res;
|
||||
}
|
||||
|
||||
private:
|
||||
void ensureNotEmpty() const {
|
||||
if (isEmptyStack()) {
|
||||
throw std::invalid_argument("Stack is empty.");
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
/** Determine whether the stack is empty */
|
||||
bool isEmptyStack() const { return (stackTop == nullptr); }
|
||||
|
||||
/** Add new item to the stack */
|
||||
void push(const value_type& item) {
|
||||
auto newNode = std::make_shared<node<value_type>>();
|
||||
newNode->data = item;
|
||||
newNode->next = stackTop;
|
||||
stackTop = newNode;
|
||||
size++;
|
||||
}
|
||||
|
||||
/** Return the top element of the stack */
|
||||
value_type top() const {
|
||||
ensureNotEmpty();
|
||||
return stackTop->data;
|
||||
}
|
||||
|
||||
/** Remove the top element of the stack */
|
||||
void pop() {
|
||||
ensureNotEmpty();
|
||||
stackTop = stackTop->next;
|
||||
size--;
|
||||
}
|
||||
|
||||
/** Clear stack */
|
||||
void clear() {
|
||||
stackTop = nullptr;
|
||||
size = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
std::shared_ptr<node<value_type>> stackTop =
|
||||
{}; /**< Pointer to the stack */
|
||||
std::size_t size = 0; ///< size of stack
|
||||
};
|
||||
|
||||
#endif // DATA_STRUCTURES_STACK_HPP_
|
@ -1,59 +1,203 @@
|
||||
#include <iostream>
|
||||
#include <cassert> /// for assert
|
||||
#include <iostream> /// for std::cout
|
||||
#include <stdexcept> /// std::invalid_argument
|
||||
#include <vector> /// for std::vector
|
||||
|
||||
#include "./stack.h"
|
||||
#include "./stack.hpp"
|
||||
|
||||
template <typename T>
|
||||
void testConstructedStackIsEmpty() {
|
||||
const stack<T> curStack;
|
||||
assert(curStack.isEmptyStack());
|
||||
}
|
||||
|
||||
void testPush() {
|
||||
using valueType = int;
|
||||
stack<valueType> curStack;
|
||||
curStack.push(10);
|
||||
curStack.push(20);
|
||||
curStack.push(30);
|
||||
curStack.push(40);
|
||||
const auto expectedData = std::vector<valueType>({40, 30, 20, 10});
|
||||
assert(curStack.toVector() == expectedData);
|
||||
}
|
||||
|
||||
void testTop() {
|
||||
using valueType = unsigned;
|
||||
stack<valueType> curStack;
|
||||
curStack.push(1);
|
||||
curStack.push(2);
|
||||
curStack.push(3);
|
||||
curStack.push(4);
|
||||
assert(curStack.top() == static_cast<valueType>(4));
|
||||
}
|
||||
|
||||
void testPop() {
|
||||
using valueType = int;
|
||||
stack<valueType> curStack;
|
||||
curStack.push(100);
|
||||
curStack.push(200);
|
||||
curStack.push(300);
|
||||
|
||||
assert(curStack.top() == static_cast<valueType>(300));
|
||||
curStack.pop();
|
||||
assert(curStack.top() == static_cast<valueType>(200));
|
||||
curStack.pop();
|
||||
assert(curStack.top() == static_cast<valueType>(100));
|
||||
curStack.pop();
|
||||
assert(curStack.isEmptyStack());
|
||||
}
|
||||
|
||||
void testClear() {
|
||||
stack<int> curStack;
|
||||
curStack.push(1000);
|
||||
curStack.push(2000);
|
||||
curStack.clear();
|
||||
assert(curStack.isEmptyStack());
|
||||
}
|
||||
|
||||
void testCopyOfStackHasSameData() {
|
||||
stack<int> stackA;
|
||||
stackA.push(10);
|
||||
stackA.push(200);
|
||||
stackA.push(3000);
|
||||
const auto stackB(stackA);
|
||||
assert(stackA.toVector() == stackB.toVector());
|
||||
}
|
||||
|
||||
void testPushingToCopyDoesNotChangeOriginal() {
|
||||
using valueType = int;
|
||||
stack<valueType> stackA;
|
||||
stackA.push(10);
|
||||
stackA.push(20);
|
||||
stackA.push(30);
|
||||
auto stackB(stackA);
|
||||
stackB.push(40);
|
||||
|
||||
const auto expectedDataA = std::vector<valueType>({30, 20, 10});
|
||||
const auto expectedDataB = std::vector<valueType>({40, 30, 20, 10});
|
||||
|
||||
assert(stackA.toVector() == expectedDataA);
|
||||
assert(stackB.toVector() == expectedDataB);
|
||||
}
|
||||
|
||||
void testPoppingFromCopyDoesNotChangeOriginal() {
|
||||
using valueType = int;
|
||||
stack<valueType> stackA;
|
||||
stackA.push(10);
|
||||
stackA.push(20);
|
||||
stackA.push(30);
|
||||
auto stackB(stackA);
|
||||
stackB.pop();
|
||||
|
||||
const auto expectedDataA = std::vector<valueType>({30, 20, 10});
|
||||
const auto expectedDataB = std::vector<valueType>({20, 10});
|
||||
|
||||
assert(stackA.toVector() == expectedDataA);
|
||||
assert(stackB.toVector() == expectedDataB);
|
||||
}
|
||||
|
||||
void testPushingToOrginalDoesNotChangeCopy() {
|
||||
using valueType = int;
|
||||
stack<valueType> stackA;
|
||||
stackA.push(10);
|
||||
stackA.push(20);
|
||||
stackA.push(30);
|
||||
const auto stackB(stackA);
|
||||
stackA.push(40);
|
||||
|
||||
const auto expectedDataA = std::vector<valueType>({40, 30, 20, 10});
|
||||
const auto expectedDataB = std::vector<valueType>({30, 20, 10});
|
||||
|
||||
assert(stackA.toVector() == expectedDataA);
|
||||
assert(stackB.toVector() == expectedDataB);
|
||||
}
|
||||
|
||||
void testPoppingFromOrginalDoesNotChangeCopy() {
|
||||
using valueType = int;
|
||||
stack<valueType> stackA;
|
||||
stackA.push(10);
|
||||
stackA.push(20);
|
||||
stackA.push(30);
|
||||
const auto stackB(stackA);
|
||||
stackA.pop();
|
||||
|
||||
const auto expectedDataA = std::vector<valueType>({20, 10});
|
||||
const auto expectedDataB = std::vector<valueType>({30, 20, 10});
|
||||
|
||||
assert(stackA.toVector() == expectedDataA);
|
||||
assert(stackB.toVector() == expectedDataB);
|
||||
}
|
||||
|
||||
void testAssign() {
|
||||
using valueType = int;
|
||||
stack<valueType> stackA;
|
||||
stackA.push(10);
|
||||
stackA.push(20);
|
||||
stackA.push(30);
|
||||
stack<valueType> stackB = stackA;
|
||||
stackA.pop();
|
||||
stackB.push(40);
|
||||
|
||||
const auto expectedDataA = std::vector<valueType>({20, 10});
|
||||
const auto expectedDataB = std::vector<valueType>({40, 30, 20, 10});
|
||||
|
||||
assert(stackA.toVector() == expectedDataA);
|
||||
assert(stackB.toVector() == expectedDataB);
|
||||
|
||||
stackB = stackA;
|
||||
stackA.pop();
|
||||
stackB.push(5);
|
||||
stackB.push(6);
|
||||
|
||||
const auto otherExpectedDataA = std::vector<valueType>({10});
|
||||
const auto otherExpectedDataB = std::vector<valueType>({6, 5, 20, 10});
|
||||
|
||||
assert(stackA.toVector() == otherExpectedDataA);
|
||||
assert(stackB.toVector() == otherExpectedDataB);
|
||||
}
|
||||
|
||||
void testTopThrowsAnvalidArgumentWhenStackEmpty() {
|
||||
const stack<long double> curStack;
|
||||
bool wasException = false;
|
||||
try {
|
||||
curStack.top();
|
||||
} catch (const std::invalid_argument&) {
|
||||
wasException = true;
|
||||
}
|
||||
assert(wasException);
|
||||
}
|
||||
|
||||
void testPopThrowsAnvalidArgumentWhenStackEmpty() {
|
||||
stack<bool> curStack;
|
||||
bool wasException = false;
|
||||
try {
|
||||
curStack.pop();
|
||||
} catch (const std::invalid_argument&) {
|
||||
wasException = true;
|
||||
}
|
||||
assert(wasException);
|
||||
}
|
||||
|
||||
int main() {
|
||||
stack<int> stk;
|
||||
std::cout << "---------------------- Test construct ----------------------"
|
||||
<< std::endl;
|
||||
stk.display();
|
||||
std::cout
|
||||
<< "---------------------- Test isEmptyStack ----------------------"
|
||||
<< std::endl;
|
||||
if (stk.isEmptyStack())
|
||||
std::cout << "PASS" << std::endl;
|
||||
else
|
||||
std::cout << "FAIL" << std::endl;
|
||||
std::cout << "---------------------- Test push ----------------------"
|
||||
<< std::endl;
|
||||
std::cout << "After pushing 10 20 30 40 into stack: " << std::endl;
|
||||
stk.push(10);
|
||||
stk.push(20);
|
||||
stk.push(30);
|
||||
stk.push(40);
|
||||
stk.display();
|
||||
std::cout << "---------------------- Test top ----------------------"
|
||||
<< std::endl;
|
||||
int value = stk.top();
|
||||
if (value == 40)
|
||||
std::cout << "PASS" << std::endl;
|
||||
else
|
||||
std::cout << "FAIL" << std::endl;
|
||||
std::cout << "---------------------- Test pop ----------------------"
|
||||
<< std::endl;
|
||||
stk.display();
|
||||
stk.pop();
|
||||
stk.pop();
|
||||
std::cout << "After popping 2 times: " << std::endl;
|
||||
stk.display();
|
||||
std::cout << "---------------------- Test overload = operator "
|
||||
"----------------------"
|
||||
<< std::endl;
|
||||
stack<int> stk1;
|
||||
std::cout << "stk current: " << std::endl;
|
||||
stk.display();
|
||||
std::cout << std::endl << "Assign stk1 = stk " << std::endl;
|
||||
stk1 = stk;
|
||||
stk1.display();
|
||||
std::cout << std::endl << "After pushing 8 9 10 into stk1:" << std::endl;
|
||||
stk1.push(8);
|
||||
stk1.push(9);
|
||||
stk1.push(10);
|
||||
stk1.display();
|
||||
std::cout << std::endl << "stk current: " << std::endl;
|
||||
stk.display();
|
||||
std::cout << "Assign back stk = stk1:" << std::endl;
|
||||
stk = stk1;
|
||||
stk.display();
|
||||
testConstructedStackIsEmpty<int>();
|
||||
testConstructedStackIsEmpty<char>();
|
||||
|
||||
testPush();
|
||||
testPop();
|
||||
testClear();
|
||||
|
||||
testCopyOfStackHasSameData();
|
||||
testPushingToCopyDoesNotChangeOriginal();
|
||||
testPoppingFromCopyDoesNotChangeOriginal();
|
||||
testPushingToOrginalDoesNotChangeCopy();
|
||||
testPoppingFromOrginalDoesNotChangeCopy();
|
||||
|
||||
testAssign();
|
||||
|
||||
testTopThrowsAnvalidArgumentWhenStackEmpty();
|
||||
testPopThrowsAnvalidArgumentWhenStackEmpty();
|
||||
|
||||
std::cout << "All tests pass!\n";
|
||||
return 0;
|
||||
}
|
||||
|
@ -9,16 +9,17 @@
|
||||
************************************************************
|
||||
* */
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <fstream>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
#include "./stack.h"
|
||||
#include "./stack.hpp"
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
double GPA;
|
||||
double highestGPA;
|
||||
double GPA = NAN;
|
||||
double highestGPA = NAN;
|
||||
std::string name;
|
||||
|
||||
assert(argc == 2);
|
||||
|
125
dynamic_programming/subset_sum.cpp
Normal file
125
dynamic_programming/subset_sum.cpp
Normal file
@ -0,0 +1,125 @@
|
||||
/**
|
||||
* @file
|
||||
* @brief Implements [Sub-set sum problem]
|
||||
* (https://en.wikipedia.org/wiki/Subset_sum_problem) algorithm, which tells
|
||||
* whether a subset with target sum exists or not.
|
||||
*
|
||||
* @details
|
||||
* In this problem, we use dynamic programming to find if we can pull out a
|
||||
* subset from an array whose sum is equal to a given target sum. The overall
|
||||
* time complexity of the problem is O(n * targetSum) where n is the size of
|
||||
* the array. For example, array = [1, -10, 2, 31, -6], targetSum = -14.
|
||||
* Output: true => We can pick subset [-10, 2, -6] with sum as
|
||||
* (-10) + 2 + (-6) = -14.
|
||||
* @author [KillerAV](https://github.com/KillerAV)
|
||||
*/
|
||||
|
||||
#include <cassert> /// for std::assert
|
||||
#include <iostream> /// for IO operations
|
||||
#include <vector> /// for std::vector
|
||||
#include <unordered_map> /// for unordered map
|
||||
|
||||
/**
|
||||
* @namespace dynamic_programming
|
||||
* @brief Dynamic Programming algorithms
|
||||
*/
|
||||
namespace dynamic_programming {
|
||||
|
||||
/**
|
||||
* @namespace subset_sum
|
||||
* @brief Functions for [Sub-set sum problem]
|
||||
* (https://en.wikipedia.org/wiki/Subset_sum_problem) algorithm
|
||||
*/
|
||||
namespace subset_sum {
|
||||
|
||||
/**
|
||||
* Recursive function using dynamic programming to find if the required sum
|
||||
* subset exists or not.
|
||||
* @param arr input array
|
||||
* @param targetSum the target sum of the subset
|
||||
* @param dp the map storing the results
|
||||
* @returns true/false based on if the target sum subset exists or not.
|
||||
*/
|
||||
bool subset_sum_recursion(
|
||||
const std::vector<int> &arr,
|
||||
int targetSum,
|
||||
std::vector<std::unordered_map<int, bool>> *dp,
|
||||
int index = 0) {
|
||||
|
||||
if(targetSum == 0) { // Found a valid subset with required sum.
|
||||
return true;
|
||||
}
|
||||
if(index == arr.size()) { // End of array
|
||||
return false;
|
||||
}
|
||||
|
||||
if ((*dp)[index].count(targetSum)) { // Answer already present in map
|
||||
return (*dp)[index][targetSum];
|
||||
}
|
||||
|
||||
bool ans = subset_sum_recursion(arr, targetSum - arr[index], dp, index + 1)
|
||||
|| subset_sum_recursion(arr, targetSum, dp, index + 1);
|
||||
(*dp)[index][targetSum] = ans; // Save ans in dp map.
|
||||
return ans;
|
||||
}
|
||||
|
||||
/**
|
||||
* Function implementing subset sum algorithm using top-down approach
|
||||
* @param arr input array
|
||||
* @param targetSum the target sum of the subset
|
||||
* @returns true/false based on if the target sum subset exists or not.
|
||||
*/
|
||||
bool subset_sum_problem(const std::vector<int> &arr, const int targetSum) {
|
||||
size_t n = arr.size();
|
||||
std::vector<std::unordered_map<int, bool>> dp(n);
|
||||
return subset_sum_recursion(arr, targetSum, &dp);
|
||||
}
|
||||
} // namespace subset_sum
|
||||
} // namespace dynamic_programming
|
||||
|
||||
/**
|
||||
* @brief Test Function
|
||||
* @return void
|
||||
*/
|
||||
static void test() {
|
||||
// custom input vector
|
||||
std::vector<std::vector<int>> custom_input_arr(3);
|
||||
custom_input_arr[0] = std::vector<int> {1, -10, 2, 31, -6};
|
||||
custom_input_arr[1] = std::vector<int> {2, 3, 4};
|
||||
custom_input_arr[2] = std::vector<int> {0, 1, 0, 1, 0};
|
||||
|
||||
std::vector<int> custom_input_target_sum(3);
|
||||
custom_input_target_sum[0] = -14;
|
||||
custom_input_target_sum[1] = 10;
|
||||
custom_input_target_sum[2] = 2;
|
||||
|
||||
// calculated output vector by pal_part Function
|
||||
std::vector<int> calculated_output(3);
|
||||
|
||||
for (int i = 0; i < 3; i++) {
|
||||
calculated_output[i] =
|
||||
dynamic_programming::subset_sum::subset_sum_problem(
|
||||
custom_input_arr[i], custom_input_target_sum[i]);
|
||||
}
|
||||
|
||||
// expected output vector
|
||||
std::vector<bool> expected_output{true, false, true};
|
||||
|
||||
// Testing implementation via assert function
|
||||
// It will throw error if any of the expected test fails
|
||||
// Else it will give nothing
|
||||
for (int i = 0; i < 3; i++) {
|
||||
assert(expected_output[i] == calculated_output[i]);
|
||||
}
|
||||
|
||||
std::cout << "All tests passed successfully!\n";
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main() {
|
||||
test(); // execute the test
|
||||
return 0;
|
||||
}
|
222
greedy_algorithms/boruvkas_minimum_spanning_tree.cpp
Normal file
222
greedy_algorithms/boruvkas_minimum_spanning_tree.cpp
Normal file
@ -0,0 +1,222 @@
|
||||
/**
|
||||
* @author [Jason Nardoni](https://github.com/JNardoni)
|
||||
* @file
|
||||
*
|
||||
* @brief
|
||||
* [Borůvkas Algorithm](https://en.wikipedia.org/wiki/Borůvka's_algorithm) to find the Minimum Spanning Tree
|
||||
*
|
||||
*
|
||||
* @details
|
||||
* Boruvka's algorithm is a greepy algorithm to find the MST by starting with small trees, and combining
|
||||
* them to build bigger ones.
|
||||
* 1. Creates a group for every vertex.
|
||||
* 2. looks through each edge of every vertex for the smallest weight. Keeps track
|
||||
* of the smallest edge for each of the current groups.
|
||||
* 3. Combine each group with the group it shares its smallest edge, adding the smallest
|
||||
* edge to the MST.
|
||||
* 4. Repeat step 2-3 until all vertices are combined into a single group.
|
||||
*
|
||||
* It assumes that the graph is connected. Non-connected edges can be represented using 0 or INT_MAX
|
||||
*
|
||||
*/
|
||||
|
||||
#include <iostream> /// for IO operations
|
||||
#include <vector> /// for std::vector
|
||||
#include <cassert> /// for assert
|
||||
#include <climits> /// for INT_MAX
|
||||
|
||||
/**
|
||||
* @namespace greedy_algorithms
|
||||
* @brief Greedy Algorithms
|
||||
*/
|
||||
namespace greedy_algorithms {
|
||||
/**
|
||||
* @namespace boruvkas_minimum_spanning_tree
|
||||
* @brief Functions for the [Borůvkas Algorithm](https://en.wikipedia.org/wiki/Borůvka's_algorithm) implementation
|
||||
*/
|
||||
namespace boruvkas_minimum_spanning_tree {
|
||||
/**
|
||||
* @brief Recursively returns the vertex's parent at the root of the tree
|
||||
* @param parent the array that will be checked
|
||||
* @param v vertex to find parent of
|
||||
* @returns the parent of the vertex
|
||||
*/
|
||||
int findParent(std::vector<std::pair<int,int>> parent, const int v) {
|
||||
if (parent[v].first != v) {
|
||||
parent[v].first = findParent(parent, parent[v].first);
|
||||
}
|
||||
|
||||
return parent[v].first;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief the implementation of boruvka's algorithm
|
||||
* @param adj a graph adjancency matrix stored as 2d vectors.
|
||||
* @returns the MST as 2d vectors
|
||||
*/
|
||||
std::vector<std::vector<int>> boruvkas(std::vector<std::vector<int>> adj) {
|
||||
|
||||
size_t size = adj.size();
|
||||
size_t total_groups = size;
|
||||
|
||||
if (size <= 1) {
|
||||
return adj;
|
||||
}
|
||||
|
||||
// Stores the current Minimum Spanning Tree. As groups are combined, they are added to the MST
|
||||
std::vector<std::vector<int>> MST(size, std::vector<int>(size, INT_MAX));
|
||||
for (int i = 0; i < size; i++) {
|
||||
MST[i][i] = 0;
|
||||
}
|
||||
|
||||
// Step 1: Create a group for each vertex
|
||||
|
||||
// Stores the parent of the vertex and its current depth, both initialized to 0
|
||||
std::vector<std::pair<int, int>> parent(size, std::make_pair(0, 0));
|
||||
|
||||
for (int i = 0; i < size; i++) {
|
||||
parent[i].first = i; // Sets parent of each vertex to itself, depth remains 0
|
||||
}
|
||||
|
||||
// Repeat until all are in a single group
|
||||
while (total_groups > 1) {
|
||||
|
||||
std::vector<std::pair<int,int>> smallest_edge(size, std::make_pair(-1, -1)); //Pairing: start node, end node
|
||||
|
||||
// Step 2: Look throught each vertex for its smallest edge, only using the right half of the adj matrix
|
||||
for (int i = 0; i < size; i++) {
|
||||
for (int j = i+1; j < size; j++) {
|
||||
|
||||
if (adj[i][j] == INT_MAX || adj[i][j] == 0) { // No connection
|
||||
continue;
|
||||
}
|
||||
|
||||
// Finds the parents of the start and end points to make sure they arent in the same group
|
||||
int parentA = findParent(parent, i);
|
||||
int parentB = findParent(parent, j);
|
||||
|
||||
if (parentA != parentB) {
|
||||
|
||||
// Grabs the start and end points for the first groups current smallest edge
|
||||
int start = smallest_edge[parentA].first;
|
||||
int end = smallest_edge[parentA].second;
|
||||
|
||||
// If there is no current smallest edge, or the new edge is smaller, records the new smallest
|
||||
if (start == -1 || adj [i][j] < adj[start][end]) {
|
||||
smallest_edge[parentA].first = i;
|
||||
smallest_edge[parentA].second = j;
|
||||
}
|
||||
|
||||
// Does the same for the second group
|
||||
start = smallest_edge[parentB].first;
|
||||
end = smallest_edge[parentB].second;
|
||||
|
||||
if (start == -1 || adj[j][i] < adj[start][end]) {
|
||||
smallest_edge[parentB].first = j;
|
||||
smallest_edge[parentB].second = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Step 3: Combine the groups based off their smallest edge
|
||||
|
||||
for (int i = 0; i < size; i++) {
|
||||
|
||||
// Makes sure the smallest edge exists
|
||||
if (smallest_edge[i].first != -1) {
|
||||
|
||||
// Start and end points for the groups smallest edge
|
||||
int start = smallest_edge[i].first;
|
||||
int end = smallest_edge[i].second;
|
||||
|
||||
// Parents of the two groups - A is always itself
|
||||
int parentA = i;
|
||||
int parentB = findParent(parent, end);
|
||||
|
||||
// Makes sure the two nodes dont share the same parent. Would happen if the two groups have been
|
||||
//merged previously through a common shortest edge
|
||||
if (parentA == parentB) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Tries to balance the trees as much as possible as they are merged. The parent of the shallower
|
||||
//tree will be pointed to the parent of the deeper tree.
|
||||
if (parent[parentA].second < parent[parentB].second) {
|
||||
parent[parentB].first = parentA; //New parent
|
||||
parent[parentB].second++; //Increase depth
|
||||
}
|
||||
else {
|
||||
parent[parentA].first = parentB;
|
||||
parent[parentA].second++;
|
||||
}
|
||||
// Add the connection to the MST, using both halves of the adj matrix
|
||||
MST[start][end] = adj[start][end];
|
||||
MST[end][start] = adj[end][start];
|
||||
total_groups--; // one fewer group
|
||||
}
|
||||
}
|
||||
}
|
||||
return MST;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief counts the sum of edges in the given tree
|
||||
* @param adj 2D vector adjacency matrix
|
||||
* @returns the int size of the tree
|
||||
*/
|
||||
int test_findGraphSum(std::vector<std::vector<int>> adj) {
|
||||
|
||||
size_t size = adj.size();
|
||||
int sum = 0;
|
||||
|
||||
//Moves through one side of the adj matrix, counting the sums of each edge
|
||||
for (int i = 0; i < size; i++) {
|
||||
for (int j = i + 1; j < size; j++) {
|
||||
if (adj[i][j] < INT_MAX) {
|
||||
sum += adj[i][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
} // namespace boruvkas_minimum_spanning_tree
|
||||
} // namespace greedy_algorithms
|
||||
|
||||
/**
|
||||
* @brief Self-test implementations
|
||||
* @returns void
|
||||
*/
|
||||
static void tests() {
|
||||
std::cout << "Starting tests...\n\n";
|
||||
std::vector<std::vector<int>> graph = {
|
||||
{0, 5, INT_MAX, 3, INT_MAX} ,
|
||||
{5, 0, 2, INT_MAX, 5} ,
|
||||
{INT_MAX, 2, 0, INT_MAX, 3} ,
|
||||
{3, INT_MAX, INT_MAX, 0, INT_MAX} ,
|
||||
{INT_MAX, 5, 3, INT_MAX, 0} ,
|
||||
};
|
||||
std::vector<std::vector<int>> MST = greedy_algorithms::boruvkas_minimum_spanning_tree::boruvkas(graph);
|
||||
assert(greedy_algorithms::boruvkas_minimum_spanning_tree::test_findGraphSum(MST) == 13);
|
||||
std::cout << "1st test passed!" << std::endl;
|
||||
|
||||
graph = {
|
||||
{ 0, 2, 0, 6, 0 },
|
||||
{ 2, 0, 3, 8, 5 },
|
||||
{ 0, 3, 0, 0, 7 },
|
||||
{ 6, 8, 0, 0, 9 },
|
||||
{ 0, 5, 7, 9, 0 }
|
||||
};
|
||||
MST = greedy_algorithms::boruvkas_minimum_spanning_tree::boruvkas(graph);
|
||||
assert(greedy_algorithms::boruvkas_minimum_spanning_tree::test_findGraphSum(MST) == 16);
|
||||
std::cout << "2nd test passed!" << std::endl;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main() {
|
||||
tests(); // run self-test implementations
|
||||
return 0;
|
||||
}
|
68
math/aliquot_sum.cpp
Normal file
68
math/aliquot_sum.cpp
Normal file
@ -0,0 +1,68 @@
|
||||
/**
|
||||
* @file
|
||||
* @brief Program to return the [Aliquot
|
||||
* Sum](https://en.wikipedia.org/wiki/Aliquot_sum) of a number
|
||||
*
|
||||
* \details
|
||||
* The Aliquot sum s(n) of a non-negative integer n is the sum of all
|
||||
* proper divisors of n, that is, all the divisors of n, other than itself.
|
||||
* For example, the Aliquot sum of 18 = 1 + 2 + 3 + 6 + 9 = 21
|
||||
*
|
||||
* @author [SpiderMath](https://github.com/SpiderMath)
|
||||
*/
|
||||
|
||||
#include <cassert> /// for assert
|
||||
#include <iostream> /// for IO operations
|
||||
|
||||
/**
|
||||
* @brief Mathematical algorithms
|
||||
* @namespace math
|
||||
*/
|
||||
namespace math {
|
||||
/**
|
||||
* Function to return the aliquot sum of a number
|
||||
* @param num The input number
|
||||
*/
|
||||
uint64_t aliquot_sum(const uint64_t num) {
|
||||
if (num == 0 || num == 1) {
|
||||
return 0; // The aliquot sum for 0 and 1 is 0
|
||||
}
|
||||
|
||||
uint64_t sum = 0;
|
||||
|
||||
for (uint64_t i = 1; i <= num / 2; i++) {
|
||||
if (num % i == 0) {
|
||||
sum += i;
|
||||
}
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
} // namespace math
|
||||
|
||||
/**
|
||||
* @brief Self-test implementations
|
||||
* @returns void
|
||||
*/
|
||||
static void test() {
|
||||
// Aliquot sum of 10 is 1 + 2 + 5 = 8
|
||||
assert(math::aliquot_sum(10) == 8);
|
||||
// Aliquot sum of 15 is 1 + 3 + 5 = 9
|
||||
assert(math::aliquot_sum(15) == 9);
|
||||
// Aliquot sum of 1 is 0
|
||||
assert(math::aliquot_sum(1) == 0);
|
||||
// Aliquot sum of 97 is 1 (the aliquot sum of a prime number is 1)
|
||||
assert(math::aliquot_sum(97) == 1);
|
||||
|
||||
std::cout << "All the tests have successfully passed!\n";
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main() {
|
||||
test(); // run the self-test implementations
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user