feat: Added Travelling Salesman Problem using bit-manipulation (#2136)

* adding travelling_salesman problem using bitmanipulation

* listing travelling_salesman problem in directory.md file

* adding requested changes

* updating DIRECTORY.md

* chore: apply suggestions from code review

Co-authored-by: David Leal <halfpacho@gmail.com>
Co-authored-by: github-actions[bot] <github-actions@users.noreply.github.com>
This commit is contained in:
Utkarsh Yadav 2023-01-23 01:09:03 +05:30 committed by GitHub
parent e2bf654e82
commit 0931d530ae
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 120 additions and 0 deletions

View File

@ -20,6 +20,7 @@
* [Find Non Repeating Number](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/bit_manipulation/find_non_repeating_number.cpp)
* [Hamming Distance](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/bit_manipulation/hamming_distance.cpp)
* [Set Kth Bit](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/bit_manipulation/set_kth_bit.cpp)
* [Travelling Salesman Using Bit Manipulation](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/bit_manipulation/travelling_salesman_using_bit_manipulation.cpp)
## Ciphers
* [A1Z26 Cipher](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/ciphers/a1z26_cipher.cpp)

View File

@ -0,0 +1,119 @@
/**
* @file
* @brief Implementation to
* [Travelling Salesman problem using bit-masking]
* (https://www.geeksforgeeks.org/travelling-salesman-problem-set-1/)
*
* @details
* Given the distance/cost(as and adjacency matrix) between each city/node to the other city/node ,
* the problem is to find the shortest possible route that visits every city exactly once
* and returns to the starting point or we can say the minimum cost of whole tour.
*
* Explanation:
* INPUT -> You are given with a adjacency matrix A = {} which contains the distance between two cities/node.
*
* OUTPUT -> Minimum cost of whole tour from starting point
*
* Worst Case Time Complexity: O(n^2 * 2^n)
* Space complexity: O(n)
* @author [Utkarsh Yadav](https://github.com/Rytnix)
*/
#include <algorithm> /// for std::min
#include <cassert> /// for assert
#include <iostream> /// for IO operations
#include <vector> /// for std::vector
#include <limits> /// for limits of integral types
/**
* @namespace bit_manipulation
* @brief Bit manipulation algorithms
*/
namespace bit_manipulation {
/**
* @namespace travellingSalesman_bitmanipulation
* @brief Functions for the [Travelling Salesman
* Bitmask](https://www.geeksforgeeks.org/travelling-salesman-problem-set-1/)
* implementation
*/
namespace travelling_salesman_using_bit_manipulation {
/**
* @brief The function implements travellingSalesman using bitmanipulation
* @param dist is the cost to reach between two cities/nodes
* @param setOfCitites represents the city in bit form.\
* @param city is taken to track the current city movement.
* @param n is the no of citys .
* @param dp vector is used to keep a record of state to avoid the recomputation.
* @returns minimum cost of traversing whole nodes/cities from starting point back to starting point
*/
std::uint64_t travelling_salesman_using_bit_manipulation(std::vector<std::vector<uint32_t>> dist, // dist is the adjacency matrix containing the distance.
// setOfCities as a bit represent the cities/nodes. Ex: if setOfCities = 2 => 0010(in binary)
// means representing the city/node B if city/nodes are represented as D->C->B->A.
std::uint64_t setOfCities,
std::uint64_t city, // city is taken to track our current city/node movement,where we are currently.
std::uint64_t n, // n is the no of cities we have.
std::vector<std::vector<uint32_t>> &dp) //dp is taken to memorize the state to avoid recomputition
{
//base case;
if (setOfCities == (1 << n) - 1) // we have covered all the cities
return dist[city][0]; //return the cost from the current city to the original city.
if (dp[setOfCities][city] != -1)
return dp[setOfCities][city];
//otherwise try all possible options
uint64_t ans = 2147483647 ;
for (int choice = 0; choice < n; choice++) {
//check if the city is visited or not.
if ((setOfCities & (1 << choice)) == 0 ) { // this means that this perticular city is not visited.
std::uint64_t subProb = dist[city][choice] + travelling_salesman_using_bit_manipulation(dist, setOfCities | (1 << choice), choice, n, dp);
// Here we are doing a recursive call to tsp with the updated set of city/node
// and choice which tells that where we are currently.
ans = std::min(ans, subProb);
}
}
dp[setOfCities][city] = ans;
return ans;
}
} // namespace travelling_salesman_using_bit_manipulation
} // namespace bit_manipulation
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
// 1st test-case
std::vector<std::vector<uint32_t>> dist = {
{0, 20, 42, 35}, {20, 0, 30, 34}, {42, 30, 0, 12}, {35, 34, 12, 0}
};
uint32_t V = dist.size();
std::vector<std::vector<uint32_t>> dp(1 << V, std::vector<uint32_t>(V, -1));
assert(bit_manipulation::travelling_salesman_using_bit_manipulation::travelling_salesman_using_bit_manipulation(dist, 1, 0, V, dp) == 97);
std::cout << "1st test-case: passed!" << "\n";
// 2nd test-case
dist = {{0, 5, 10, 15}, {5, 0, 20, 30}, {10, 20, 0, 35}, {15, 30, 35, 0}};
V = dist.size();
std::vector<std::vector<uint32_t>> dp1(1 << V, std::vector<uint32_t>(V, -1));
assert(bit_manipulation::travelling_salesman_using_bit_manipulation::travelling_salesman_using_bit_manipulation(dist, 1, 0, V, dp1) == 75);
std::cout << "2nd test-case: passed!" << "\n";
// 3rd test-case
dist = {
{0, 10, 15, 20}, {10, 0, 35, 25}, {15, 35, 0, 30}, {20, 25, 30, 0}
};
V = dist.size();
std::vector<std::vector<uint32_t>> dp2(1 << V, std::vector<uint32_t>(V, -1));
assert(bit_manipulation::travelling_salesman_using_bit_manipulation::travelling_salesman_using_bit_manipulation(dist, 1, 0, V, dp2) == 80);
std::cout << "3rd test-case: passed!" << "\n";
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
return 0;
}