mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
Merge pull request #10 from kvedala/machine_learning/adaline
[fix] Updates to Machine learning/adaline
This commit is contained in:
commit
09f6252724
@ -26,6 +26,7 @@
|
||||
#include <cstdlib>
|
||||
#include <ctime>
|
||||
#include <iostream>
|
||||
#include <numeric>
|
||||
#include <vector>
|
||||
|
||||
#define MAX_ITER 500 // INT_MAX ///< Maximum number of iterations to learn
|
||||
@ -52,8 +53,8 @@ class adaline {
|
||||
1); // additional weight is for the constant bias term
|
||||
|
||||
// initialize with random weights in the range [-50, 49]
|
||||
for (int i = 0; i < weights.size(); i++)
|
||||
weights[i] = (static_cast<double>(std::rand() % 100) - 50);
|
||||
for (int i = 0; i < weights.size(); i++) weights[i] = 1.f;
|
||||
// weights[i] = (static_cast<double>(std::rand() % 100) - 50);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -73,17 +74,23 @@ class adaline {
|
||||
/**
|
||||
* predict the output of the model for given set of features
|
||||
* \param[in] x input vector
|
||||
* \param[out] out optional argument to return neuron output before applying
|
||||
* activation function (optional, `nullptr` to ignore)
|
||||
* \returns model prediction output
|
||||
*/
|
||||
int predict(const std::vector<double> &x) {
|
||||
int predict(const std::vector<double> &x, double *out = nullptr) {
|
||||
if (!check_size_match(x))
|
||||
return 0;
|
||||
|
||||
double y = weights.back(); // assign bias value
|
||||
|
||||
for (int i = 0; i < x.size(); i++) y += x[i] * weights[i];
|
||||
// for (int i = 0; i < x.size(); i++) y += x[i] * weights[i];
|
||||
y = std::inner_product(x.begin(), x.end(), weights.begin(), y);
|
||||
|
||||
return y >= 0 ? 1 : -1; // quantizer: apply ADALINE threshold function
|
||||
if (out != nullptr) // if out variable is provided
|
||||
*out = y;
|
||||
|
||||
return activation(y); // quantizer: apply ADALINE threshold function
|
||||
}
|
||||
|
||||
/**
|
||||
@ -148,6 +155,8 @@ class adaline {
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
int activation(double x) { return x > 0 ? 1 : -1; }
|
||||
|
||||
private:
|
||||
/**
|
||||
* convenient function to check if input feature vector size matches the
|
||||
@ -207,7 +216,7 @@ void test1(double eta = 0.01) {
|
||||
|
||||
/**
|
||||
* test function to predict points in a 2D coordinate system above the line
|
||||
* \f$x+y=-1\f$ as +1 and others as -1.
|
||||
* \f$x+3y=-1\f$ as +1 and others as -1.
|
||||
* Note that each point is defined by 2 values or 2 features.
|
||||
* The function will create random sample points for training and test purposes.
|
||||
* \param[in] eta learning rate (optional, default=0.01)
|
||||
@ -220,16 +229,18 @@ void test2(double eta = 0.01) {
|
||||
std::vector<double> X[N];
|
||||
int Y[N]; // corresponding y-values
|
||||
|
||||
int range = 500; // sample points range
|
||||
int range2 = range >> 1;
|
||||
// generate sample points in the interval
|
||||
// [-range2/100 , (range2-1)/100]
|
||||
int range = 500; // sample points full-range
|
||||
int range2 = range >> 1; // sample points half-range
|
||||
for (int i = 0; i < N; i++) {
|
||||
double x0 = ((std::rand() % range) - range2) / 100.f;
|
||||
double x1 = ((std::rand() % range) - range2) / 100.f;
|
||||
X[i] = {x0, x1};
|
||||
Y[i] = (x0 + x1) > -1 ? 1 : -1;
|
||||
Y[i] = (x0 + 3. * x1) > -1 ? 1 : -1;
|
||||
}
|
||||
|
||||
std::cout << "------- Test 1 -------" << std::endl;
|
||||
std::cout << "------- Test 2 -------" << std::endl;
|
||||
std::cout << "Model before fit: " << ada << std::endl;
|
||||
|
||||
ada.fit(X, Y);
|
||||
@ -244,7 +255,57 @@ void test2(double eta = 0.01) {
|
||||
|
||||
std::cout << "Predict for x=(" << x0 << "," << x1 << "): " << predict;
|
||||
|
||||
int expected_val = (x0 + x1) > -1 ? 1 : -1;
|
||||
int expected_val = (x0 + 3. * x1) > -1 ? 1 : -1;
|
||||
assert(predict == expected_val);
|
||||
std::cout << " ...passed" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* test function to predict points in a 3D coordinate system lying within the
|
||||
* sphere of radius 1 and centre at origin as +1 and others as -1. Note that
|
||||
* each point is defined by 3 values but we use 6 features. The function will
|
||||
* create random sample points for training and test purposes.
|
||||
* \param[in] eta learning rate (optional, default=0.01)
|
||||
*/
|
||||
void test3(double eta = 0.01) {
|
||||
adaline ada(6, eta); // 2 features
|
||||
|
||||
const int N = 100; // number of sample points
|
||||
|
||||
std::vector<double> X[N];
|
||||
int Y[N]; // corresponding y-values
|
||||
|
||||
// generate sample points in the interval
|
||||
// [-range2/100 , (range2-1)/100]
|
||||
int range = 200; // sample points full-range
|
||||
int range2 = range >> 1; // sample points half-range
|
||||
for (int i = 0; i < N; i++) {
|
||||
double x0 = ((std::rand() % range) - range2) / 100.f;
|
||||
double x1 = ((std::rand() % range) - range2) / 100.f;
|
||||
double x2 = ((std::rand() % range) - range2) / 100.f;
|
||||
X[i] = {x0, x1, x2, x0 * x0, x1 * x1, x2 * x2};
|
||||
Y[i] = ((x0 * x0) + (x1 * x1) + (x2 * x2)) <= 1.f ? 1 : -1;
|
||||
}
|
||||
|
||||
std::cout << "------- Test 3 -------" << std::endl;
|
||||
std::cout << "Model before fit: " << ada << std::endl;
|
||||
|
||||
ada.fit(X, Y);
|
||||
std::cout << "Model after fit: " << ada << std::endl;
|
||||
|
||||
int N_test_cases = 5;
|
||||
for (int i = 0; i < N_test_cases; i++) {
|
||||
double x0 = ((std::rand() % range) - range2) / 100.f;
|
||||
double x1 = ((std::rand() % range) - range2) / 100.f;
|
||||
double x2 = ((std::rand() % range) - range2) / 100.f;
|
||||
|
||||
int predict = ada.predict({x0, x1, x2, x0 * x0, x1 * x1, x2 * x2});
|
||||
|
||||
std::cout << "Predict for x=(" << x0 << "," << x1 << "," << x2
|
||||
<< "): " << predict;
|
||||
|
||||
int expected_val = ((x0 * x0) + (x1 * x1) + (x2 * x2)) <= 1.f ? 1 : -1;
|
||||
assert(predict == expected_val);
|
||||
std::cout << " ...passed" << std::endl;
|
||||
}
|
||||
@ -254,7 +315,7 @@ void test2(double eta = 0.01) {
|
||||
int main(int argc, char **argv) {
|
||||
std::srand(std::time(nullptr)); // initialize random number generator
|
||||
|
||||
double eta = 0.2; // default value of eta
|
||||
double eta = 0.1; // default value of eta
|
||||
if (argc == 2) // read eta value from commandline argument if present
|
||||
eta = strtof(argv[1], nullptr);
|
||||
|
||||
@ -265,5 +326,10 @@ int main(int argc, char **argv) {
|
||||
|
||||
test2(eta);
|
||||
|
||||
std::cout << "Press ENTER to continue..." << std::endl;
|
||||
std::cin.get();
|
||||
|
||||
test3(eta);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user