mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
added Dynamic Programming Problems
This commit is contained in:
parent
a3ddfcdcf3
commit
0b8d66bd91
51
Dynamic Programming/Coin-Change.cpp
Normal file
51
Dynamic Programming/Coin-Change.cpp
Normal file
@ -0,0 +1,51 @@
|
||||
#include <iostream>
|
||||
#include<climits>
|
||||
using namespace std;
|
||||
|
||||
// Function to find the Minimum number of coins required to get Sum S
|
||||
int findMinCoins(int arr[], int n, int N)
|
||||
{
|
||||
// dp[i] = no of coins required to get a total of i
|
||||
int dp[N + 1];
|
||||
|
||||
// 0 coins are needed for 0 sum
|
||||
|
||||
dp[0] = 0;
|
||||
|
||||
|
||||
for (int i = 1; i <= N; i++)
|
||||
{
|
||||
// initialize minimum number of coins needed to infinity
|
||||
dp[i] = INT_MAX;
|
||||
int res = INT_MAX;
|
||||
|
||||
// do for each coin
|
||||
for (int c = 0; c < n; c++)
|
||||
{
|
||||
if (i - arr[c] >= 0) // check if coins doesn't become negative by including it
|
||||
res = dp[i - arr[c]];
|
||||
|
||||
// if total can be reached by including current coin c,
|
||||
// update minimum number of coins needed dp[i]
|
||||
if (res != INT_MAX)
|
||||
dp[i] = min(dp[i], res + 1);
|
||||
}
|
||||
}
|
||||
|
||||
// The Minimum No of Coins Required for N = dp[N]
|
||||
return dp[N];
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
// No of Coins We Have
|
||||
int arr[] = { 1, 2, 3, 4 };
|
||||
int n = sizeof(arr) / sizeof(arr[0]);
|
||||
|
||||
// Total Change Required
|
||||
int N = 15;
|
||||
|
||||
cout << "Minimum Number of Coins Required "<< findMinCoins(arr, n, N) << "\n";
|
||||
|
||||
return 0;
|
||||
}
|
62
Dynamic Programming/Matrix-Chain-Multiplication.cpp
Normal file
62
Dynamic Programming/Matrix-Chain-Multiplication.cpp
Normal file
@ -0,0 +1,62 @@
|
||||
#include <iostream>
|
||||
#include <climits>
|
||||
using namespace std;
|
||||
|
||||
#define MAX 10
|
||||
|
||||
// dp table to store the solution for already computed sub problems
|
||||
int dp[MAX][MAX];
|
||||
|
||||
// Function to find the most efficient way to multiply the given sequence of matrices
|
||||
int MatrixChainMultiplication(int dim[], int i, int j)
|
||||
{
|
||||
// base case: one matrix
|
||||
if (j <= i + 1)
|
||||
return 0;
|
||||
|
||||
// stores minimum number of scalar multiplications (i.e., cost)
|
||||
// needed to compute the matrix M[i+1]...M[j] = M[i..j]
|
||||
int min = INT_MAX;
|
||||
|
||||
// if dp[i][j] is not calculated (calculate it!!)
|
||||
|
||||
if (dp[i][j] == 0)
|
||||
{
|
||||
// take the minimum over each possible position at which the
|
||||
// sequence of matrices can be split
|
||||
|
||||
for (int k = i + 1; k <= j - 1; k++)
|
||||
{
|
||||
// recur for M[i+1]..M[k] to get a i x k matrix
|
||||
int cost = MatrixChainMultiplication(dim, i, k);
|
||||
|
||||
// recur for M[k+1]..M[j] to get a k x j matrix
|
||||
cost += MatrixChainMultiplication(dim, k, j);
|
||||
|
||||
// cost to multiply two (i x k) and (k x j) matrix
|
||||
cost += dim[i] * dim[k] * dim[j];
|
||||
|
||||
if (cost < min)
|
||||
min = cost; // store the minimum cost
|
||||
}
|
||||
dp[i][j] = min;
|
||||
}
|
||||
|
||||
// return min cost to multiply M[j+1]..M[j]
|
||||
return dp[i][j];
|
||||
}
|
||||
|
||||
// main function
|
||||
int main()
|
||||
{
|
||||
// Matrix i has Dimensions dim[i-1] & dim[i] for i=1..n
|
||||
// input is 10 x 30 matrix, 30 x 5 matrix, 5 x 60 matrix
|
||||
int dim[] = { 10, 30, 5, 60 };
|
||||
int n = sizeof(dim) / sizeof(dim[0]);
|
||||
|
||||
// Function Calling: MatrixChainMultiplications(dimensions_array, starting, ending);
|
||||
|
||||
cout << "Minimum cost is " << MatrixChainMultiplication(dim, 0, n - 1) << "\n";
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user