mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
Merge branch 'master' into z-function
This commit is contained in:
commit
0c7515e9a1
@ -174,6 +174,7 @@
|
|||||||
* [Gcd Of N Numbers](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/gcd_of_n_numbers.cpp)
|
* [Gcd Of N Numbers](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/gcd_of_n_numbers.cpp)
|
||||||
* [Gcd Recursive Euclidean](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/gcd_recursive_euclidean.cpp)
|
* [Gcd Recursive Euclidean](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/gcd_recursive_euclidean.cpp)
|
||||||
* [Integral Approximation](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/integral_approximation.cpp)
|
* [Integral Approximation](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/integral_approximation.cpp)
|
||||||
|
* [Inv Sqrt](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/inv_sqrt.cpp)
|
||||||
* [Large Factorial](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/large_factorial.cpp)
|
* [Large Factorial](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/large_factorial.cpp)
|
||||||
* [Large Number](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/large_number.h)
|
* [Large Number](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/large_number.h)
|
||||||
* [Largest Power](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/largest_power.cpp)
|
* [Largest Power](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/largest_power.cpp)
|
||||||
@ -330,5 +331,5 @@
|
|||||||
* [Brute Force String Searching](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/strings/brute_force_string_searching.cpp)
|
* [Brute Force String Searching](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/strings/brute_force_string_searching.cpp)
|
||||||
* [Horspool](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/strings/horspool.cpp)
|
* [Horspool](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/strings/horspool.cpp)
|
||||||
* [Knuth Morris Pratt](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/strings/knuth_morris_pratt.cpp)
|
* [Knuth Morris Pratt](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/strings/knuth_morris_pratt.cpp)
|
||||||
* [Manacher's Algorithm](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/strings/manacher_algorithm.cpp)
|
* [Manacher Algorithm](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/strings/manacher_algorithm.cpp)
|
||||||
* [Rabin Karp](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/strings/rabin_karp.cpp)
|
* [Rabin Karp](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/strings/rabin_karp.cpp)
|
||||||
|
103
math/inv_sqrt.cpp
Normal file
103
math/inv_sqrt.cpp
Normal file
@ -0,0 +1,103 @@
|
|||||||
|
/**
|
||||||
|
* @file
|
||||||
|
* @brief Implementation of [the inverse square root
|
||||||
|
* Root](https://medium.com/hard-mode/the-legendary-fast-inverse-square-root-e51fee3b49d9).
|
||||||
|
* @details
|
||||||
|
* Two implementation to calculate inverse inverse root,
|
||||||
|
* from Quake III Arena (C++ version) and with a standard library (`cmath`).
|
||||||
|
* This algorithm is used to calculate shadows in Quake III Arena.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <cassert> /// for assert
|
||||||
|
#include <cmath> /// for `std::sqrt`
|
||||||
|
#include <iostream> /// for IO operations
|
||||||
|
#include <limits> /// for numeric_limits
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief This is the function that calculates the fast inverse square root.
|
||||||
|
* The following code is the fast inverse square root implementation from
|
||||||
|
* Quake III Arena (Adapted for C++). More information can be found at
|
||||||
|
* [Wikipedia](https://en.wikipedia.org/wiki/Fast_inverse_square_root)
|
||||||
|
* @tparam T floating type
|
||||||
|
* @tparam iterations inverse square root, the greater the number of
|
||||||
|
* iterations, the more exact the result will be (1 or 2).
|
||||||
|
* @param x value to calculate
|
||||||
|
* @return the inverse square root
|
||||||
|
*/
|
||||||
|
template <typename T = double, char iterations = 2>
|
||||||
|
inline T Fast_InvSqrt(T x) {
|
||||||
|
using Tint = typename std::conditional<sizeof(T) == 8, std::int64_t,
|
||||||
|
std::int32_t>::type;
|
||||||
|
T y = x;
|
||||||
|
T x2 = y * 0.5;
|
||||||
|
|
||||||
|
Tint i =
|
||||||
|
*reinterpret_cast<Tint *>(&y); // Store floating-point bits in integer
|
||||||
|
|
||||||
|
i = (sizeof(T) == 8 ? 0x5fe6eb50c7b537a9 : 0x5f3759df) -
|
||||||
|
(i >> 1); // Initial guess for Newton's method
|
||||||
|
|
||||||
|
y = *reinterpret_cast<T *>(&i); // Convert new bits into float
|
||||||
|
|
||||||
|
y = y * (1.5 - (x2 * y * y)); // 1st iteration Newton's method
|
||||||
|
if (iterations == 2) {
|
||||||
|
y = y * (1.5 - (x2 * y * y)); // 2nd iteration, the more exact result
|
||||||
|
}
|
||||||
|
return y;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief This is the function that calculates the fast inverse square root.
|
||||||
|
* The following code is the fast inverse square root with standard lib (cmath)
|
||||||
|
* More information can be found at
|
||||||
|
* [LinkedIn](https://www.linkedin.com/pulse/fast-inverse-square-root-still-armin-kassemi-langroodi)
|
||||||
|
* @tparam T floating type
|
||||||
|
* @param number value to calculate
|
||||||
|
* @return the inverse square root
|
||||||
|
*/
|
||||||
|
template <typename T = double>
|
||||||
|
T Standard_InvSqrt(T number) {
|
||||||
|
T squareRoot = sqrt(number);
|
||||||
|
return 1.0f / squareRoot;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Self-test implementations
|
||||||
|
* @returns void
|
||||||
|
*/
|
||||||
|
static void test() {
|
||||||
|
const float epsilon = 1e-3f;
|
||||||
|
|
||||||
|
/* Tests with multiple values */
|
||||||
|
assert(std::fabs(Standard_InvSqrt<float>(100.0f) - 0.0998449f) < epsilon);
|
||||||
|
assert(std::fabs(Standard_InvSqrt<double>(36.0f) - 0.166667f) < epsilon);
|
||||||
|
assert(std::fabs(Standard_InvSqrt(12.0f) - 0.288423f) < epsilon);
|
||||||
|
assert(std::fabs(Standard_InvSqrt<double>(5.0f) - 0.447141f) < epsilon);
|
||||||
|
|
||||||
|
assert(std::fabs(Fast_InvSqrt<float, 1>(100.0f) - 0.0998449f) < epsilon);
|
||||||
|
assert(std::fabs(Fast_InvSqrt<double, 1>(36.0f) - 0.166667f) < epsilon);
|
||||||
|
assert(std::fabs(Fast_InvSqrt(12.0f) - 0.288423) < epsilon);
|
||||||
|
assert(std::fabs(Fast_InvSqrt<double>(5.0f) - 0.447141) < epsilon);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Main function
|
||||||
|
* @returns 0 on exit
|
||||||
|
*/
|
||||||
|
int main() {
|
||||||
|
test(); // run self-test implementations
|
||||||
|
std::cout << "The Fast inverse square root of 36 is: "
|
||||||
|
<< Fast_InvSqrt<float, 1>(36.0f) << std::endl;
|
||||||
|
std::cout << "The Fast inverse square root of 36 is: "
|
||||||
|
<< Fast_InvSqrt<double, 2>(36.0f) << " (2 iterations)"
|
||||||
|
<< std::endl;
|
||||||
|
std::cout << "The Fast inverse square root of 100 is: "
|
||||||
|
<< Fast_InvSqrt(100.0f)
|
||||||
|
<< " (With default template type and iterations: double, 2)"
|
||||||
|
<< std::endl;
|
||||||
|
std::cout << "The Standard inverse square root of 36 is: "
|
||||||
|
<< Standard_InvSqrt<float>(36.0f) << std::endl;
|
||||||
|
std::cout << "The Standard inverse square root of 100 is: "
|
||||||
|
<< Standard_InvSqrt(100.0f)
|
||||||
|
<< " (With default template type: double)" << std::endl;
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user