mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
clang-format and clang-tidy fixes for a01765a6
This commit is contained in:
parent
a01765a6bb
commit
0f2606ffdb
@ -4,8 +4,8 @@
|
||||
* data stream
|
||||
*
|
||||
* @details
|
||||
* Given a stream of integers, the algorithm calculates the median of a fixed size
|
||||
* window at the back of the stream. The leading time complexity of this
|
||||
* Given a stream of integers, the algorithm calculates the median of a fixed
|
||||
* size window at the back of the stream. The leading time complexity of this
|
||||
* algorithm is O(log(N), and it is inspired by the known algorithm to [find
|
||||
* median from (infinite) data
|
||||
* stream](https://www.tutorialcup.com/interview/algorithm/find-median-from-data-stream.htm),
|
||||
@ -17,13 +17,13 @@
|
||||
* pushing and popping. Each new value is pushed to the window back, while a
|
||||
* value from the front of the window is popped. In addition, the algorithm
|
||||
* manages a multi-value binary search tree (BST), implemented by std::multiset.
|
||||
* For each new value that is inserted into the window, it is also inserted to the
|
||||
* BST. When a value is popped from the window, it is also erased from the BST.
|
||||
* Both insertion and erasion to/from the BST are O(logN) in time, with N the
|
||||
* size of the window. Finally, the algorithm keeps a pointer to the root of the
|
||||
* BST, and updates its position whenever values are inserted or erased to/from
|
||||
* BST. The root of the tree is the median! Hence, median retrieval is always
|
||||
* O(1)
|
||||
* For each new value that is inserted into the window, it is also inserted to
|
||||
* the BST. When a value is popped from the window, it is also erased from the
|
||||
* BST. Both insertion and erasion to/from the BST are O(logN) in time, with N
|
||||
* the size of the window. Finally, the algorithm keeps a pointer to the root of
|
||||
* the BST, and updates its position whenever values are inserted or erased
|
||||
* to/from BST. The root of the tree is the median! Hence, median retrieval is
|
||||
* always O(1)
|
||||
*
|
||||
* Time complexity: O(logN). Space complexity: O(N). N - size of window
|
||||
* @author [Yaniv Hollander](https://github.com/YanivHollander)
|
||||
@ -32,8 +32,8 @@
|
||||
#include <cstdlib> /// for std::rand - needed in testing
|
||||
#include <ctime> /// for std::time - needed in testing
|
||||
#include <list> /// for std::list - used to manage sliding window
|
||||
#include <set> /// for std::multiset - used to manage multi-value sorted sliding window values
|
||||
#include <vector> /// for std::vector - needed in testing
|
||||
#include <set> /// for std::multiset - used to manage multi-value sorted sliding window values
|
||||
#include <vector> /// for std::vector - needed in testing
|
||||
|
||||
/**
|
||||
* @namespace probability
|
||||
@ -55,7 +55,7 @@ using size_type = Window::size_type;
|
||||
*/
|
||||
class WindowedMedian {
|
||||
const size_type _windowSize; ///< sliding window size
|
||||
Window _window; ///< a sliding window of values along the stream
|
||||
Window _window; ///< a sliding window of values along the stream
|
||||
std::multiset<int> _sortedValues; ///< a DS to represent a balanced
|
||||
/// multi-value binary search tree (BST)
|
||||
std::multiset<int>::const_iterator
|
||||
@ -103,13 +103,14 @@ class WindowedMedian {
|
||||
}
|
||||
|
||||
/// However, if the erased value is on the right branch or the median
|
||||
/// itself, and the number of elements is odd, the new median will be the
|
||||
/// left child of the current one
|
||||
/// itself, and the number of elements is odd, the new median will be
|
||||
/// the left child of the current one
|
||||
else if (value >= *_itMedian && sz % 2 != 0) {
|
||||
--_itMedian; // O(1) - traversing one step to the left child
|
||||
}
|
||||
|
||||
/// Find the (first) position of the value we want to erase, and erase it
|
||||
/// Find the (first) position of the value we want to erase, and erase
|
||||
/// it
|
||||
const auto it = _sortedValues.find(value); // O(logN)
|
||||
_sortedValues.erase(it); // O(logN)
|
||||
}
|
||||
@ -126,16 +127,16 @@ class WindowedMedian {
|
||||
* @param value New value to insert
|
||||
*/
|
||||
void insert(int value) {
|
||||
|
||||
/// Push new value to the back of the sliding window - O(1)
|
||||
_window.push_back(value);
|
||||
insertToSorted(value); // Insert value to the multi-value BST - O(logN)
|
||||
if (_window.size() > _windowSize) { /// If exceeding size of window, pop
|
||||
/// from its left side
|
||||
eraseFromSorted(_window.front()); /// Erase from the multi-value BST
|
||||
/// the window left side value
|
||||
_window
|
||||
.pop_front(); /// Pop the left side value from the window - O(1)
|
||||
if (_window.size() > _windowSize) { /// If exceeding size of window,
|
||||
/// pop from its left side
|
||||
eraseFromSorted(
|
||||
_window.front()); /// Erase from the multi-value BST
|
||||
/// the window left side value
|
||||
_window.pop_front(); /// Pop the left side value from the window -
|
||||
/// O(1)
|
||||
}
|
||||
}
|
||||
|
||||
@ -170,8 +171,8 @@ class WindowedMedian {
|
||||
0.5f * *next(window.begin(), window.size() / 2 - 1); /// O(N)
|
||||
}
|
||||
};
|
||||
} /// namespace windowed_median
|
||||
} /// namespace probability
|
||||
} // namespace windowed_median
|
||||
} // namespace probability
|
||||
|
||||
/**
|
||||
* @brief Self-test implementations
|
||||
@ -195,32 +196,41 @@ static void test(const std::vector<int> &vals, int windowSize) {
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main(int argc, const char *argv[]) {
|
||||
|
||||
/// A few fixed test cases
|
||||
test({1, 2, 3, 4, 5, 6, 7, 8, 9}, 3); /// Array of sorted values; odd window size
|
||||
test({9, 8, 7, 6, 5, 4, 3, 2, 1}, 3); /// Array of sorted values - decreasing; odd window size
|
||||
test({9, 8, 7, 6, 5, 4, 5, 6}, 4); /// Even window size
|
||||
test({3, 3, 3, 3, 3, 3, 3, 3, 3}, 3); /// Array with repeating values
|
||||
test({3, 3, 3, 3, 7, 3, 3, 3, 3}, 3); /// Array with same values except one
|
||||
test({4, 3, 3, -5, -5, 1, 3, 4, 5}, 5); /// Array that includes repeating values including negatives
|
||||
|
||||
/// Array with large values - sum of few pairs exceeds MAX_INT. Window size is even - testing calculation of
|
||||
/// average median between two middle values
|
||||
test({1, 2, 3, 4, 5, 6, 7, 8, 9},
|
||||
3); /// Array of sorted values; odd window size
|
||||
test({9, 8, 7, 6, 5, 4, 3, 2, 1},
|
||||
3); /// Array of sorted values - decreasing; odd window size
|
||||
test({9, 8, 7, 6, 5, 4, 5, 6}, 4); /// Even window size
|
||||
test({3, 3, 3, 3, 3, 3, 3, 3, 3}, 3); /// Array with repeating values
|
||||
test({3, 3, 3, 3, 7, 3, 3, 3, 3}, 3); /// Array with same values except one
|
||||
test({4, 3, 3, -5, -5, 1, 3, 4, 5},
|
||||
5); /// Array that includes repeating values including negatives
|
||||
|
||||
/// Array with large values - sum of few pairs exceeds MAX_INT. Window size
|
||||
/// is even - testing calculation of average median between two middle
|
||||
/// values
|
||||
test({470211272, 101027544, 1457850878, 1458777923, 2007237709, 823564440,
|
||||
1115438165, 1784484492, 74243042, 114807987}, 6);
|
||||
|
||||
1115438165, 1784484492, 74243042, 114807987},
|
||||
6);
|
||||
|
||||
/// Random test cases
|
||||
std::srand(static_cast<unsigned int>(std::time(nullptr)));
|
||||
std::vector<int> vals;
|
||||
for (int i = 8; i < 100; i++) {
|
||||
const auto n = 1 + std::rand() / ((RAND_MAX + 5u) / 20); /// Array size in the range [5, 20]
|
||||
auto windowSize = 1 + std::rand() / ((RAND_MAX + 3u) / 10); /// Window size in the range [3, 10]
|
||||
const auto n =
|
||||
1 + std::rand() /
|
||||
((RAND_MAX + 5u) / 20); /// Array size in the range [5, 20]
|
||||
auto windowSize =
|
||||
1 + std::rand() / ((RAND_MAX + 3u) /
|
||||
10); /// Window size in the range [3, 10]
|
||||
vals.clear();
|
||||
vals.reserve(n);
|
||||
for (int i = 0; i < n; i++) {
|
||||
vals.push_back(rand() - RAND_MAX); /// Random array values (positive/negative)
|
||||
vals.push_back(
|
||||
rand() - RAND_MAX); /// Random array values (positive/negative)
|
||||
}
|
||||
test(vals, windowSize); /// Testing randomized test
|
||||
test(vals, windowSize); /// Testing randomized test
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user