mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
feat: Added a class implemetation of complex numbers along with implementation of all (most) binary operations involved with complex numbers.
This commit is contained in:
parent
96ed582eb2
commit
1158e626cb
183
math/complex_numbers.cpp
Normal file
183
math/complex_numbers.cpp
Normal file
@ -0,0 +1,183 @@
|
||||
/**
|
||||
* Copyright 2020 @author tjgurwara99
|
||||
* @file
|
||||
*
|
||||
* A basic implementation of Complex Number field as a class with operators overloaded to accommodate (mathematical) field operations.
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
#include <stdexcept>
|
||||
|
||||
/**
|
||||
* Class Complex to represent complex numbers as a field.
|
||||
*/
|
||||
class Complex {
|
||||
// The real value of the complex number
|
||||
double re;
|
||||
// The imaginary value of the complex number
|
||||
double im;
|
||||
|
||||
public:
|
||||
/**
|
||||
* Complex Constructor which initialises the complex number which takes two arguments.
|
||||
* @param x The real value of the complex number.
|
||||
* @param y The imaginary value of the complex number.
|
||||
*/
|
||||
Complex(double x, double y) {
|
||||
this->re = x;
|
||||
this->im = y;
|
||||
}
|
||||
|
||||
/**
|
||||
* Complex Constructor which initialises the complex number with no arguments.
|
||||
*/
|
||||
Complex() {
|
||||
Complex(0.0,0.0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Member function (getter) to access the class' re value.
|
||||
*/
|
||||
double real() const {
|
||||
return this->re;
|
||||
}
|
||||
|
||||
/**
|
||||
* Member function (getter) to access the class' im value.
|
||||
*/
|
||||
double imag() const {
|
||||
return this->im;
|
||||
}
|
||||
|
||||
/**
|
||||
* Member function to which gives the absolute value (modulus) of our complex number
|
||||
* @return \f$ \sqrt{z \dot \bar{z} \f$ where \f$ z \f$ is our complex number.
|
||||
*/
|
||||
double abs() const {
|
||||
return std::sqrt(this->re*this->re + this->im*this->im);
|
||||
}
|
||||
|
||||
/**
|
||||
* Operator overload to be able to add two complex numbers.
|
||||
* @param other The other number that is added to the current number.
|
||||
* @return result current number plus other number
|
||||
*/
|
||||
Complex operator+(const Complex& other) {
|
||||
Complex result(this->re + other.re, this->im + other.im);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Operator overload to be able to subtract two complex numbers.
|
||||
* @param other The other number being subtracted from the current number.
|
||||
* @return result current number subtract other number
|
||||
*/
|
||||
Complex operator-(const Complex& other) {
|
||||
Complex result(this->re - other.re, this->im - other.im);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Operator overload to be able to multiple two complex numbers.
|
||||
* @param other The other number to multiply the current number to.
|
||||
* @return result current number times other number.
|
||||
*/
|
||||
Complex operator*(const Complex& other) {
|
||||
Complex result(this->re * other.re - this->im * other.im,
|
||||
this->re * other.im + this->im * other.re);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Operator overload of the BITWISE NOT which gives us the conjugate of our complex number.
|
||||
* NOTE: This is overloading the BITWISE operator but its not a BITWISE operation in this definition.
|
||||
* @return result The conjugate of our complex number.
|
||||
*/
|
||||
Complex operator~() const {
|
||||
Complex result(this->re, -(this->im));
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Operator overload to be able to divide two complex numbers. This function would throw an exception if the other number is zero.
|
||||
* @param other The other number we divide our number by.
|
||||
* @return result Current number divided by other number.
|
||||
*/
|
||||
Complex operator/(const Complex& other) {
|
||||
Complex result = *this * ~other;
|
||||
double denominator = other.abs() * other.abs();
|
||||
if (denominator != 0) {
|
||||
result = Complex(result.real() / denominator, result.imag() / denominator);
|
||||
return result;
|
||||
}
|
||||
else {
|
||||
throw std::invalid_argument("Undefined Value");
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Logical Equal overload for our Complex class.
|
||||
* @param a Left hand side of our expression
|
||||
* @param b Right hand side of our expression
|
||||
* @return 'True' If real and imaginary parts of a and b are same
|
||||
* @return 'False' Otherwise.
|
||||
*/
|
||||
bool operator==(const Complex& a, const Complex& b) {
|
||||
double del_real = a.real() - b.real();
|
||||
double del_imag = a.imag() - b.imag();
|
||||
return ((del_real <= 1e-15 && del_real >= - 1e-15 ) && (del_imag <= 1e-15 && del_imag >= - 1e-15));
|
||||
}
|
||||
|
||||
/**
|
||||
* Overloaded insersion operator to accommodate the printing of our complex number in their standard form.
|
||||
* @param os The console stream
|
||||
* @param num The complex number.
|
||||
*/
|
||||
std::ostream& operator<<(std::ostream& os, const Complex& num) {
|
||||
os << num.real();
|
||||
if (num.imag() < 0) {
|
||||
os << " - " << -num.imag();
|
||||
}
|
||||
else {
|
||||
os << " + " << num.imag();
|
||||
}
|
||||
os << "i";
|
||||
return os;
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests Function
|
||||
*/
|
||||
void tests() {
|
||||
Complex num1(1,1), num2(1,1);
|
||||
// Test for addition
|
||||
assert(((void)"1 + 1i + 1 + 1i is equal to 2 + 2i but the addition doesn't add up \n",
|
||||
(num1 + num2) == Complex(2,2)));
|
||||
std::cout << "First test passes." << std::endl;
|
||||
// Test for subtraction
|
||||
assert(((void)"1 + 1i - 1 - 1i is equal to 0 but the program says otherwise. \n",
|
||||
(num1 - num2) == Complex(0,0)));
|
||||
std::cout << "Second test passes." << std::endl;
|
||||
// Test for multiplication
|
||||
assert(((void)"(1 + 1i) * (1 + 1i) is equal to 2i but the program says otherwise. \n",
|
||||
(num1 * num2) == Complex(0,2)));
|
||||
std::cout << "Third test passes." << std::endl;
|
||||
// Test for division
|
||||
assert(((void)"(1 + 1i) / (1 + 1i) is equal to 1 but the program says otherwise.\n",
|
||||
(num1 / num2) == Complex(1,0)));
|
||||
std::cout << "Fourth test passes." << std::endl;
|
||||
// Test for conjugates
|
||||
assert(((void)"(1 + 1i) has a conjugate which is equal to (1 - 1i) but the program says otherwise.\n",
|
||||
~num1 == Complex(1,-1)));
|
||||
std::cout << "Fifth test passes." << std::endl;
|
||||
|
||||
}
|
||||
/**
|
||||
* Main function
|
||||
*/
|
||||
int main() {
|
||||
tests();
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user