mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
Graph Coloring
This commit is contained in:
parent
285a5d626a
commit
1276e237b1
81
Backtracking/Graph Coloring.cpp
Normal file
81
Backtracking/Graph Coloring.cpp
Normal file
@ -0,0 +1,81 @@
|
||||
#include<stdio.h>
|
||||
|
||||
// Number of vertices in the graph
|
||||
#define V 4
|
||||
|
||||
void printSolution(int color[]);
|
||||
|
||||
/* A utility function to check if the current color assignment
|
||||
is safe for vertex v */
|
||||
bool isSafe (int v, bool graph[V][V], int color[], int c)
|
||||
{
|
||||
for (int i = 0; i < V; i++)
|
||||
if (graph[v][i] && c == color[i])
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/* A recursive utility function to solve m coloring problem */
|
||||
void graphColoring(bool graph[V][V], int m, int color[], int v)
|
||||
{
|
||||
/* base case: If all vertices are assigned a color then
|
||||
return true */
|
||||
if (v == V){
|
||||
printSolution(color);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Consider this vertex v and try different colors */
|
||||
for (int c = 1; c <= m; c++)
|
||||
{
|
||||
/* Check if assignment of color c to v is fine*/
|
||||
if (isSafe(v, graph, color, c))
|
||||
{
|
||||
color[v] = c;
|
||||
|
||||
/* recur to assign colors to rest of the vertices */
|
||||
graphColoring (graph, m, color, v+1);
|
||||
|
||||
|
||||
/* If assigning color c doesn't lead to a solution
|
||||
then remove it */
|
||||
color[v] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* A utility function to print solution */
|
||||
void printSolution(int color[])
|
||||
{
|
||||
printf(" Following are the assigned colors \n");
|
||||
for (int i = 0; i < V; i++)
|
||||
printf(" %d ", color[i]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
// driver program to test above function
|
||||
int main()
|
||||
{
|
||||
/* Create following graph and test whether it is 3 colorable
|
||||
(3)---(2)
|
||||
| / |
|
||||
| / |
|
||||
| / |
|
||||
(0)---(1)
|
||||
*/
|
||||
bool graph[V][V] = {{0, 1, 1, 1},
|
||||
{1, 0, 1, 0},
|
||||
{1, 1, 0, 1},
|
||||
{1, 0, 1, 0},
|
||||
};
|
||||
int m = 3; // Number of colors
|
||||
|
||||
int color[V];
|
||||
|
||||
for (int i = 0; i < V; i++)
|
||||
color[i] = 0;
|
||||
|
||||
graphColoring(graph, m, color, 0);
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user