[feat/docs/fix]: improve the Dijkstra algorithm (#2508)

Originally initiated in #2490.
Co-authored-by: Mark Matthew Vergara <mmvergara@users.noreply.github.com>
This commit is contained in:
David Leal 2023-07-24 18:49:51 -06:00 committed by GitHub
parent b480ddb191
commit 17c374dc14
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,23 +1,52 @@
#include <limits.h>
#include <iostream>
/**
* @file
* @brief [Dijkstra](https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm) algorithm
* implementation
* @details
* _Quote from Wikipedia._
*
* **Dijkstra's algorithm** is an algorithm for finding the
* shortest paths between nodes in a weighted graph, which may represent, for
* example, road networks. It was conceived by computer scientist Edsger W.
* Dijkstra in 1956 and published three years later.
*
* @author [David Leal](https://github.com/Panquesito7)
* @author [Arpan Jain](https://github.com/arpanjain97)
*/
using namespace std;
#include <cassert> /// for assert
#include <climits> /// for INT_MAX
#include <iostream> /// for IO operations
#include <vector> /// for std::vector
// Wrapper class for storing a graph
/**
* @namespace
* @brief Greedy Algorithms
*/
namespace greedy_algorithms {
/**
* @brief
*/
/**
* @brief Wrapper class for storing a graph
*/
class Graph {
public:
int vertexNum;
int **edges;
int vertexNum = 0;
std::vector<std::vector<int>> edges{};
// Constructs a graph with V vertices and E edges
Graph(const int V) {
// initializes the array edges.
this->edges = new int *[V];
/**
* @brief Constructs a graph
* @param V number of vertices of the graph
*/
explicit Graph(const int V) {
// Initialize the array edges
this->edges = std::vector<std::vector<int>>(V, std::vector<int>(V, 0));
for (int i = 0; i < V; i++) {
edges[i] = new int[V];
edges[i] = std::vector<int>(V, 0);
}
// fills the array with zeros.
// Fills the array with zeros
for (int i = 0; i < V; i++) {
for (int j = 0; j < V; j++) {
edges[i][j] = 0;
@ -27,13 +56,28 @@ class Graph {
this->vertexNum = V;
}
// Adds the given edge to the graph
void addEdge(int src, int dst, int weight) {
/**
* @brief Adds an edge to the graph
* @param src the graph the edge should be added to
* @param dst the position where the edge should be added to
* @param weight the weight of the edge that should be added
* @returns void
*/
void add_edge(int src, int dst, int weight) {
this->edges[src][dst] = weight;
}
};
// Utility function to find minimum distance vertex in mdist
int minDistance(int mdist[], bool vset[], int V) {
/**
* @brief Utility function that finds
* the vertex with the minimum distance in `mdist`.
*
* @param mdist array of distances to each vertex
* @param vset array indicating inclusion in the shortest path tree
* @param V the number of vertices in the graph
* @returns index of the vertex with the minimum distance
*/
int minimum_distance(std::vector<int> mdist, std::vector<bool> vset, int V) {
int minVal = INT_MAX, minInd = 0;
for (int i = 0; i < V; i++) {
if (!vset[i] && (mdist[i] < minVal)) {
@ -45,27 +89,42 @@ int minDistance(int mdist[], bool vset[], int V) {
return minInd;
}
// Utility function to print distances
void print(int dist[], int V) {
cout << "\nVertex Distance" << endl;
/**
* @brief Utility function to print the distances to vertices.
*
* This function prints the distances to each vertex in a tabular format. If the
* distance is equal to INT_MAX, it is displayed as "INF".
*
* @param dist An array representing the distances to each vertex.
* @param V The number of vertices in the graph.
* @return void
*/
void print(std::vector<int> dist, int V) {
std::cout << "\nVertex Distance\n";
for (int i = 0; i < V; i++) {
if (dist[i] < INT_MAX)
cout << i << "\t" << dist[i] << endl;
else
cout << i << "\tINF" << endl;
if (dist[i] < INT_MAX) {
std::cout << i << "\t" << dist[i] << "\n";
}
else {
std::cout << i << "\tINF" << "\n";
}
}
}
// The main function that finds the shortest path from given source
// to all other vertices using Dijkstra's Algorithm.It doesn't work on negative
// weights
void Dijkstra(Graph graph, int src) {
/**
* @brief The main function that finds the shortest path from given source
* to all other vertices using Dijkstra's Algorithm.
* @note This doesn't work on negative weights.
* @param graph the graph to be processed
* @param src the source of the given vertex
* @returns void
*/
void dijkstra(Graph graph, int src) {
int V = graph.vertexNum;
int mdist[V]; // Stores updated distances to vertex
bool vset[V]; // vset[i] is true if the vertex i included
// in the shortest path tree
std::vector<int> mdist{}; // Stores updated distances to the vertex
std::vector<bool> vset{}; // `vset[i]` is true if the vertex `i` is included in the shortest path tree
// Initialise mdist and vset. Set distance of source as zero
// Initialize `mdist and `vset`. Set distance of source as zero
for (int i = 0; i < V; i++) {
mdist[i] = INT_MAX;
vset[i] = false;
@ -73,9 +132,9 @@ void Dijkstra(Graph graph, int src) {
mdist[src] = 0;
// iterate to find shortest path
// iterate to find the shortest path
for (int count = 0; count < V - 1; count++) {
int u = minDistance(mdist, vset, V);
int u = minimum_distance(mdist, vset, V);
vset[u] = true;
@ -89,36 +148,52 @@ void Dijkstra(Graph graph, int src) {
print(mdist, V);
}
} // namespace greedy_algorithms
// Driver Function
/**
* @brief Self-test implementations
* @returns void
*/
static void tests() {
greedy_algorithms::Graph graph(8);
// 1st test.
graph.add_edge(6, 2, 4);
graph.add_edge(2, 6, 4);
assert(graph.edges[6][2] == 4);
// 2nd test.
graph.add_edge(0, 1, 1);
graph.add_edge(1, 0, 1);
assert(graph.edges[0][1] == 1);
// 3rd test.
graph.add_edge(0, 2, 7);
graph.add_edge(2, 0, 7);
graph.add_edge(1, 2, 1);
graph.add_edge(2, 1, 1);
assert(graph.edges[0][2] == 7);
// 4th test.
graph.add_edge(1, 3, 3);
graph.add_edge(3, 1, 3);
graph.add_edge(1, 4, 2);
graph.add_edge(4, 1, 2);
graph.add_edge(2, 3, 2);
assert(graph.edges[1][3] == 3);
std::cout << "All tests have successfully passed!\n";
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
int V, E, gsrc;
int src, dst, weight;
cout << "Enter number of vertices: ";
cin >> V;
cout << "Enter number of edges: ";
cin >> E;
Graph G(V);
for (int i = 0; i < E; i++) {
cout << "\nEdge " << i + 1 << "\nEnter source: ";
cin >> src;
cout << "Enter destination: ";
cin >> dst;
cout << "Enter weight: ";
cin >> weight;
// makes sure source and destionation are in the proper bounds.
if (src >= 0 && src < V && dst >= 0 && dst < V) {
G.addEdge(src, dst, weight);
} else {
cout << "source and/or destination out of bounds" << endl;
i--;
continue;
}
}
cout << "\nEnter source:";
cin >> gsrc;
Dijkstra(G, gsrc);
tests(); // run self-test implementations
return 0;
}