diff --git a/linear_algebra/gram_schmidt.cpp b/numerical_methods/gram_schmidt.cpp similarity index 91% rename from linear_algebra/gram_schmidt.cpp rename to numerical_methods/gram_schmidt.cpp index 9d25b2033..c72f8553b 100644 --- a/linear_algebra/gram_schmidt.cpp +++ b/numerical_methods/gram_schmidt.cpp @@ -36,10 +36,10 @@ #include "math.h" /** - * @namespace linear_algebra - * @brief Linear Algebra algorithms + * @namespace numerical_methods + * @brief Numerical Methods algorithms */ -namespace linear_algebra { +namespace numerical_methods { /** * @namespace gram_schmidt * @brief Functions for [Gram Schmidt Orthogonalisation @@ -173,7 +173,7 @@ void gram_schmidt(int r, const int& c, display(r, c, B); // for displaying orthogoanlised vectors } } // namespace gram_schmidt -} // namespace linear_algebra +} // namespace numerical_methods /** * Test Function. Process has been tested for 3 Sample Inputs * @returns void @@ -183,12 +183,12 @@ static void test() { {{1, 0, 1, 0}, {1, 1, 1, 1}, {0, 1, 2, 1}}}; std::array, 20> b1 = {{0}}; double dot1 = 0; - linear_algebra::gram_schmidt::gram_schmidt(3, 4, a1, b1); + numerical_methods::gram_schmidt::gram_schmidt(3, 4, a1, b1); int flag = 1; for (int i = 0; i < 2; ++i) { for (int j = i + 1; j < 3; ++j) { dot1 = fabs( - linear_algebra::gram_schmidt::dot_product(b1[i], b1[j], 4)); + numerical_methods::gram_schmidt::dot_product(b1[i], b1[j], 4)); if (dot1 > 0.1) { flag = 0; break; @@ -203,12 +203,12 @@ static void test() { std::array, 20> a2 = {{{3, 1}, {2, 2}}}; std::array, 20> b2 = {{0}}; double dot2 = 0; - linear_algebra::gram_schmidt::gram_schmidt(2, 2, a2, b2); + numerical_methods::gram_schmidt::gram_schmidt(2, 2, a2, b2); flag = 1; for (int i = 0; i < 1; ++i) { for (int j = i + 1; j < 2; ++j) { dot2 = fabs( - linear_algebra::gram_schmidt::dot_product(b2[i], b2[j], 2)); + numerical_methods::gram_schmidt::dot_product(b2[i], b2[j], 2)); if (dot2 > 0.1) { flag = 0; break; @@ -223,12 +223,12 @@ static void test() { std::array, 20> a3 = {{{1, 2, 2}, {-4, 3, 2}}}; std::array, 20> b3 = {{0}}; double dot3 = 0; - linear_algebra::gram_schmidt::gram_schmidt(2, 3, a3, b3); + numerical_methods::gram_schmidt::gram_schmidt(2, 3, a3, b3); flag = 1; for (int i = 0; i < 1; ++i) { for (int j = i + 1; j < 2; ++j) { dot3 = fabs( - linear_algebra::gram_schmidt::dot_product(b3[i], b3[j], 3)); + numerical_methods::gram_schmidt::dot_product(b3[i], b3[j], 3)); if (dot3 > 0.1) { flag = 0; break; @@ -268,14 +268,14 @@ int main() { std::cout << '\n'; } - linear_algebra::gram_schmidt::gram_schmidt(r, c, A, B); + numerical_methods::gram_schmidt::gram_schmidt(r, c, A, B); double dot = 0; int flag = 1; /// To check whether vectors are orthogonal or not for (int i = 0; i < r - 1; ++i) { for (int j = i + 1; j < r; ++j) { - dot = - fabs(linear_algebra::gram_schmidt::dot_product(B[i], B[j], c)); + dot = fabs( + numerical_methods::gram_schmidt::dot_product(B[i], B[j], c)); if (dot > 0.1) /// take make the process numerically stable, upper /// bound for the dot product take 0.1 {