Merge pull request #1033 from fhlasek/dijkstra

fix: linter for dijkstra
This commit is contained in:
Ayaan Khan 2020-08-17 00:20:44 +05:30 committed by GitHub
commit 327a4f57d6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,52 +1,180 @@
#include <cstdio>
/**
* @file
* @brief [Graph Dijkstras Shortest Path Algorithm
* (Dijkstra's Shortest Path)]
* (https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm)
*
* @author [Ayaan Khan](http://github.com/ayaankhan98)
*
* @details
* Dijkstra's Algorithm is used to find the shortest path from a source
* vertex to all other reachable vertex in the graph.
* The algorithm initially assumes all the nodes are unreachable from the
* given source vertex so we mark the distances of all vertices as INF
* (infinity) from source vertex (INF / infinity denotes unable to reach).
*
* in similar fashion with BFS we assume the distance of source vertex as 0
* and pushes the vertex in a priority queue with it's distance.
* we maintain the priority queue as a min heap so that we can get the
* minimum element at the top of heap
*
* Basically what we do in this algorithm is that we try to minimize the
* distances of all the reachable vertices from the current vertex, look
* at the code below to understand in better way.
*
*/
#include <cassert>
#include <iostream>
#include <limits>
#include <queue>
#include <utility>
#include <vector>
using namespace std;
#define INF 10000010
vector<pair<int, int>> graph[5 * 100001];
int dis[5 * 100001];
int dij(vector<pair<int, int>> *v, int s, int *dis) {
priority_queue<pair<int, int>, vector<pair<int, int>>,
greater<pair<int, int>>>
pq;
// source distance to zero.
pq.push(make_pair(0, s));
dis[s] = 0;
int u;
while (!pq.empty()) {
u = (pq.top()).second;
pq.pop();
for (vector<pair<int, int>>::iterator it = v[u].begin();
it != v[u].end(); it++) {
if (dis[u] + it->first < dis[it->second]) {
dis[it->second] = dis[u] + it->first;
pq.push(make_pair(dis[it->second], it->second));
}
}
}
}
int main() {
int m, n, l, x, y, s;
// n--> number of nodes , m --> number of edges
cin >> n >> m;
for (int i = 0; i < m; i++) {
// input edges.
scanf("%d%d%d", &x, &y, &l);
graph[x].push_back(make_pair(l, y));
graph[y].push_back(
make_pair(l, x)); // comment this line for directed graph
}
// start node.
scanf("%d", &s);
// intialise all distances to infinity.
for (int i = 1; i <= n; i++) dis[i] = INF;
dij(graph, s, dis);
#include <memory>
for (int i = 1; i <= n; i++)
if (dis[i] == INF)
cout << "-1 ";
else
cout << dis[i] << " ";
return 0;
constexpr int64_t INF = std::numeric_limits<int64_t>::max();
/**
* @namespace graph
* @brief Graph Algorithms
*/
namespace graph {
/**
* @brief Function that add edge between two nodes or vertices of graph
*
* @param u any node or vertex of graph
* @param v any node or vertex of graph
*/
void addEdge(std::vector<std::vector<std::pair<int, int>>> *adj, int u, int v,
int w) {
(*adj)[u - 1].push_back(std::make_pair(v - 1, w));
// (*adj)[v - 1].push_back(std::make_pair(u - 1, w));
}
/**
* @brief Function runs the dijkstra algorithm for some source vertex and
* target vertex in the graph and returns the shortest distance of target
* from the source.
*
* @param adj input graph
* @param s source vertex
* @param t target vertex
*
* @return shortest distance if target is reachable from source else -1 in
* case if target is not reachable from source.
*/
int dijkstra(std::vector<std::vector<std::pair<int, int>>> *adj, int s, int t) {
/// n denotes the number of vertices in graph
int n = adj->size();
/// setting all the distances initially to INF
std::vector<int64_t> dist(n, INF);
/// creating a min heap using priority queue
/// first element of pair contains the distance
/// second element of pair contains the vertex
std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>,
std::greater<std::pair<int, int>>>
pq;
/// pushing the source vertex 's' with 0 distance in min heap
pq.push(std::make_pair(0, s));
/// marking the distance of source as 0
dist[s] = 0;
while (!pq.empty()) {
/// second element of pair denotes the node / vertex
int currentNode = pq.top().second;
/// first element of pair denotes the distance
int currentDist = pq.top().first;
pq.pop();
/// for all the reachable vertex from the currently exploring vertex
/// we will try to minimize the distance
for (std::pair<int, int> edge : (*adj)[currentNode]) {
/// minimizing distances
if (currentDist + edge.second < dist[edge.first]) {
dist[edge.first] = currentDist + edge.second;
pq.push(std::make_pair(dist[edge.first], edge.first));
}
}
}
if (dist[t] != INF) {
return dist[t];
}
return -1;
}
} // namespace graph
/** Function to test the Algorithm */
void tests() {
std::cout << "Initiatinig Predefined Tests..." << std::endl;
std::cout << "Initiating Test 1..." << std::endl;
std::vector<std::vector<std::pair<int, int>>> adj1(
4, std::vector<std::pair<int, int>>());
graph::addEdge(&adj1, 1, 2, 1);
graph::addEdge(&adj1, 4, 1, 2);
graph::addEdge(&adj1, 2, 3, 2);
graph::addEdge(&adj1, 1, 3, 5);
int s = 1, t = 3;
assert(graph::dijkstra(&adj1, s - 1, t - 1) == 3);
std::cout << "Test 1 Passed..." << std::endl;
s = 4, t = 3;
std::cout << "Initiating Test 2..." << std::endl;
assert(graph::dijkstra(&adj1, s - 1, t - 1) == 5);
std::cout << "Test 2 Passed..." << std::endl;
std::vector<std::vector<std::pair<int, int>>> adj2(
5, std::vector<std::pair<int, int>>());
graph::addEdge(&adj2, 1, 2, 4);
graph::addEdge(&adj2, 1, 3, 2);
graph::addEdge(&adj2, 2, 3, 2);
graph::addEdge(&adj2, 3, 2, 1);
graph::addEdge(&adj2, 2, 4, 2);
graph::addEdge(&adj2, 3, 5, 4);
graph::addEdge(&adj2, 5, 4, 1);
graph::addEdge(&adj2, 2, 5, 3);
graph::addEdge(&adj2, 3, 4, 4);
s = 1, t = 5;
std::cout << "Initiating Test 3..." << std::endl;
assert(graph::dijkstra(&adj2, s - 1, t - 1) == 6);
std::cout << "Test 3 Passed..." << std::endl;
std::cout << "All Test Passed..." << std::endl << std::endl;
}
/** Main function */
int main() {
// running predefined tests
tests();
int vertices = int(), edges = int();
std::cout << "Enter the number of vertices : ";
std::cin >> vertices;
std::cout << "Enter the number of edges : ";
std::cin >> edges;
std::vector<std::vector<std::pair<int, int>>> adj(
vertices, std::vector<std::pair<int, int>>());
int u = int(), v = int(), w = int();
while (edges--) {
std::cin >> u >> v >> w;
graph::addEdge(&adj, u, v, w);
}
int s = int(), t = int();
std::cin >> s >> t;
int dist = graph::dijkstra(&adj, s - 1, t - 1);
if (dist == -1) {
std::cout << "Target not reachable from source" << std::endl;
} else {
std::cout << "Shortest Path Distance : " << dist << std::endl;
}
return 0;
}