mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
Format Euler's Totient
This commit is contained in:
parent
1d6492bf33
commit
58f6815aad
@ -1,38 +1,36 @@
|
||||
/// C++ Program to find Euler Totient Function
|
||||
#include<iostream>
|
||||
|
||||
/**
|
||||
/*
|
||||
* Euler Totient Function is also known as phi function.
|
||||
* phi(n) = phi(p1^a1).phi(p2^a2)...
|
||||
* where p1, p2,... are prime factors of n.
|
||||
* 3 Euler's properties:
|
||||
* 1. phi(prime_no) = prime_no-1
|
||||
* 2. phi(prime_no^k) = (prime_no^k - prime_no^(k-1))
|
||||
* 3. phi(a,b) = phi(a). phi(b) where a and b are relative primes.
|
||||
* Applying this 3 properties on the first equation.
|
||||
* phi(n) = n. (1-1/p1). (1-1/p2). ...
|
||||
* where p1,p2... are prime factors.
|
||||
* Hence Implementation in O(sqrt(n)).
|
||||
* phi(100) = 40
|
||||
* phi(1) = 1
|
||||
* phi(17501) = 15120
|
||||
* phi(1420) = 560
|
||||
*/
|
||||
|
||||
Euler Totient Function also know as phi function.
|
||||
|
||||
phi(n) = phi(p1^a1).phi(p2^a2)...
|
||||
where p1, p2,... are prime factor of n.
|
||||
|
||||
3 Euler's Property:
|
||||
1. phi(prime_no) = prime_no-1
|
||||
2. phi(prime_no^k) = (prime_no^k - prime_no^(k-1))
|
||||
3. phi(a,b) = phi(a). phi(b) where a and b are relative primes.
|
||||
|
||||
Applying this 3 property on the first equation.
|
||||
phi(n) = n. (1-1/p1). (1-1/p2). ...
|
||||
where p1,p2... are prime factors.
|
||||
|
||||
Hence Implementation in O(sqrt(n)).
|
||||
|
||||
*/
|
||||
|
||||
/// Function to caculate euler totient function
|
||||
// Function to caculate Euler's totient phi
|
||||
int phiFunction(int n) {
|
||||
int result = n;
|
||||
for (int i=2; i*i <= n; i++) {
|
||||
if (n%i == 0) {
|
||||
while (n%i == 0) {
|
||||
for (int i = 2; i * i <= n; i++) {
|
||||
if (n % i == 0) {
|
||||
while (n % i == 0) {
|
||||
n /= i;
|
||||
}
|
||||
result -= result/i;
|
||||
result -= result / i;
|
||||
}
|
||||
}
|
||||
if (n > 1) result -= result/n;
|
||||
if (n > 1) result -= result / n;
|
||||
return result;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user