mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
feat: add Strassen's Matrix Multiplication (#2413)
* Feat: Add Strassen's matrix multiplication * updating DIRECTORY.md * Fix cpp lint error * updating DIRECTORY.md * clang-format and clang-tidy fixes for02439b57
* Fix windows error * Add namespaces * updating DIRECTORY.md * Proper documentation * Reduce the matrix size. * updating DIRECTORY.md * clang-format and clang-tidy fixes for0545555a
Co-authored-by: toastedbreadandomelette <toastedbreadandomelette@gmail.com> Co-authored-by: github-actions[bot] <github-actions@users.noreply.github.com> Co-authored-by: David Leal <halfpacho@gmail.com>
This commit is contained in:
parent
a6a9d8e75a
commit
5b238724b8
@ -82,6 +82,7 @@
|
||||
|
||||
## Divide And Conquer
|
||||
* [Karatsuba Algorithm For Fast Multiplication](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/divide_and_conquer/karatsuba_algorithm_for_fast_multiplication.cpp)
|
||||
* [Strassen Matrix Multiplication](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/divide_and_conquer/strassen_matrix_multiplication.cpp)
|
||||
|
||||
## Dynamic Programming
|
||||
* [0 1 Knapsack](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/dynamic_programming/0_1_knapsack.cpp)
|
||||
@ -110,6 +111,7 @@
|
||||
* [Partition Problem](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/dynamic_programming/partition_problem.cpp)
|
||||
* [Searching Of Element In Dynamic Array](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/dynamic_programming/searching_of_element_in_dynamic_array.cpp)
|
||||
* [Shortest Common Supersequence](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/dynamic_programming/shortest_common_supersequence.cpp)
|
||||
* [Subset Sum](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/dynamic_programming/subset_sum.cpp)
|
||||
* [Tree Height](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/dynamic_programming/tree_height.cpp)
|
||||
* [Word Break](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/dynamic_programming/word_break.cpp)
|
||||
|
||||
@ -146,6 +148,7 @@
|
||||
* [Spirograph](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/graphics/spirograph.cpp)
|
||||
|
||||
## Greedy Algorithms
|
||||
* [Boruvkas Minimum Spanning Tree](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/greedy_algorithms/boruvkas_minimum_spanning_tree.cpp)
|
||||
* [Dijkstra](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/greedy_algorithms/dijkstra.cpp)
|
||||
* [Huffman](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/greedy_algorithms/huffman.cpp)
|
||||
* [Jumpgame](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/greedy_algorithms/jumpgame.cpp)
|
||||
@ -171,6 +174,7 @@
|
||||
* [Vector Ops](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/machine_learning/vector_ops.hpp)
|
||||
|
||||
## Math
|
||||
* [Aliquot Sum](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/math/aliquot_sum.cpp)
|
||||
* [Approximate Pi](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/math/approximate_pi.cpp)
|
||||
* [Area](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/math/area.cpp)
|
||||
* [Armstrong Number](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/math/armstrong_number.cpp)
|
||||
|
@ -5,12 +5,14 @@
|
||||
* (https://www.geeksforgeeks.org/travelling-salesman-problem-set-1/)
|
||||
*
|
||||
* @details
|
||||
* Given the distance/cost(as and adjacency matrix) between each city/node to the other city/node ,
|
||||
* the problem is to find the shortest possible route that visits every city exactly once
|
||||
* and returns to the starting point or we can say the minimum cost of whole tour.
|
||||
* Given the distance/cost(as and adjacency matrix) between each city/node to
|
||||
* the other city/node , the problem is to find the shortest possible route that
|
||||
* visits every city exactly once and returns to the starting point or we can
|
||||
* say the minimum cost of whole tour.
|
||||
*
|
||||
* Explanation:
|
||||
* INPUT -> You are given with a adjacency matrix A = {} which contains the distance between two cities/node.
|
||||
* INPUT -> You are given with a adjacency matrix A = {} which contains the
|
||||
* distance between two cities/node.
|
||||
*
|
||||
* OUTPUT -> Minimum cost of whole tour from starting point
|
||||
*
|
||||
@ -21,8 +23,8 @@
|
||||
#include <algorithm> /// for std::min
|
||||
#include <cassert> /// for assert
|
||||
#include <iostream> /// for IO operations
|
||||
#include <vector> /// for std::vector
|
||||
#include <limits> /// for limits of integral types
|
||||
#include <vector> /// for std::vector
|
||||
|
||||
/**
|
||||
* @namespace bit_manipulation
|
||||
@ -42,34 +44,47 @@ namespace travelling_salesman_using_bit_manipulation {
|
||||
* @param setOfCitites represents the city in bit form.\
|
||||
* @param city is taken to track the current city movement.
|
||||
* @param n is the no of citys .
|
||||
* @param dp vector is used to keep a record of state to avoid the recomputation.
|
||||
* @returns minimum cost of traversing whole nodes/cities from starting point back to starting point
|
||||
* @param dp vector is used to keep a record of state to avoid the
|
||||
* recomputation.
|
||||
* @returns minimum cost of traversing whole nodes/cities from starting point
|
||||
* back to starting point
|
||||
*/
|
||||
std::uint64_t travelling_salesman_using_bit_manipulation(std::vector<std::vector<uint32_t>> dist, // dist is the adjacency matrix containing the distance.
|
||||
// setOfCities as a bit represent the cities/nodes. Ex: if setOfCities = 2 => 0010(in binary)
|
||||
// means representing the city/node B if city/nodes are represented as D->C->B->A.
|
||||
std::uint64_t travelling_salesman_using_bit_manipulation(
|
||||
std::vector<std::vector<uint32_t>>
|
||||
dist, // dist is the adjacency matrix containing the distance.
|
||||
// setOfCities as a bit represent the cities/nodes. Ex: if
|
||||
// setOfCities = 2 => 0010(in binary) means representing the
|
||||
// city/node B if city/nodes are represented as D->C->B->A.
|
||||
std::uint64_t setOfCities,
|
||||
std::uint64_t city, // city is taken to track our current city/node movement,where we are currently.
|
||||
std::uint64_t city, // city is taken to track our current city/node
|
||||
// movement,where we are currently.
|
||||
std::uint64_t n, // n is the no of cities we have.
|
||||
std::vector<std::vector<uint32_t>> &dp) //dp is taken to memorize the state to avoid recomputition
|
||||
std::vector<std::vector<uint32_t>>
|
||||
&dp) // dp is taken to memorize the state to avoid recomputition
|
||||
{
|
||||
// base case;
|
||||
if (setOfCities == (1 << n) - 1) // we have covered all the cities
|
||||
return dist[city][0]; //return the cost from the current city to the original city.
|
||||
if (setOfCities == (1 << n) - 1) { // we have covered all the cities
|
||||
return dist[city][0]; // return the cost from the current city to the
|
||||
// original city.
|
||||
}
|
||||
|
||||
if (dp[setOfCities][city] != -1)
|
||||
if (dp[setOfCities][city] != -1) {
|
||||
return dp[setOfCities][city];
|
||||
}
|
||||
// otherwise try all possible options
|
||||
uint64_t ans = 2147483647;
|
||||
for (int choice = 0; choice < n; choice++) {
|
||||
// check if the city is visited or not.
|
||||
if ((setOfCities & (1 << choice)) == 0 ) { // this means that this perticular city is not visited.
|
||||
std::uint64_t subProb = dist[city][choice] + travelling_salesman_using_bit_manipulation(dist, setOfCities | (1 << choice), choice, n, dp);
|
||||
// Here we are doing a recursive call to tsp with the updated set of city/node
|
||||
// and choice which tells that where we are currently.
|
||||
if ((setOfCities & (1 << choice)) ==
|
||||
0) { // this means that this perticular city is not visited.
|
||||
std::uint64_t subProb =
|
||||
dist[city][choice] +
|
||||
travelling_salesman_using_bit_manipulation(
|
||||
dist, setOfCities | (1 << choice), choice, n, dp);
|
||||
// Here we are doing a recursive call to tsp with the updated set of
|
||||
// city/node and choice which tells that where we are currently.
|
||||
ans = std::min(ans, subProb);
|
||||
}
|
||||
|
||||
}
|
||||
dp[setOfCities][city] = ans;
|
||||
return ans;
|
||||
@ -84,29 +99,36 @@ std::uint64_t travelling_salesman_using_bit_manipulation(std::vector<std::vector
|
||||
static void test() {
|
||||
// 1st test-case
|
||||
std::vector<std::vector<uint32_t>> dist = {
|
||||
{0, 20, 42, 35}, {20, 0, 30, 34}, {42, 30, 0, 12}, {35, 34, 12, 0}
|
||||
};
|
||||
{0, 20, 42, 35}, {20, 0, 30, 34}, {42, 30, 0, 12}, {35, 34, 12, 0}};
|
||||
uint32_t V = dist.size();
|
||||
std::vector<std::vector<uint32_t>> dp(1 << V, std::vector<uint32_t>(V, -1));
|
||||
assert(bit_manipulation::travelling_salesman_using_bit_manipulation::travelling_salesman_using_bit_manipulation(dist, 1, 0, V, dp) == 97);
|
||||
std::cout << "1st test-case: passed!" << "\n";
|
||||
assert(bit_manipulation::travelling_salesman_using_bit_manipulation::
|
||||
travelling_salesman_using_bit_manipulation(dist, 1, 0, V, dp) ==
|
||||
97);
|
||||
std::cout << "1st test-case: passed!"
|
||||
<< "\n";
|
||||
|
||||
// 2nd test-case
|
||||
dist = {{0, 5, 10, 15}, {5, 0, 20, 30}, {10, 20, 0, 35}, {15, 30, 35, 0}};
|
||||
V = dist.size();
|
||||
std::vector<std::vector<uint32_t>> dp1(1 << V, std::vector<uint32_t>(V, -1));
|
||||
assert(bit_manipulation::travelling_salesman_using_bit_manipulation::travelling_salesman_using_bit_manipulation(dist, 1, 0, V, dp1) == 75);
|
||||
std::cout << "2nd test-case: passed!" << "\n";
|
||||
std::vector<std::vector<uint32_t>> dp1(1 << V,
|
||||
std::vector<uint32_t>(V, -1));
|
||||
assert(bit_manipulation::travelling_salesman_using_bit_manipulation::
|
||||
travelling_salesman_using_bit_manipulation(dist, 1, 0, V, dp1) ==
|
||||
75);
|
||||
std::cout << "2nd test-case: passed!"
|
||||
<< "\n";
|
||||
// 3rd test-case
|
||||
dist = {
|
||||
{0, 10, 15, 20}, {10, 0, 35, 25}, {15, 35, 0, 30}, {20, 25, 30, 0}
|
||||
};
|
||||
dist = {{0, 10, 15, 20}, {10, 0, 35, 25}, {15, 35, 0, 30}, {20, 25, 30, 0}};
|
||||
V = dist.size();
|
||||
std::vector<std::vector<uint32_t>> dp2(1 << V, std::vector<uint32_t>(V, -1));
|
||||
assert(bit_manipulation::travelling_salesman_using_bit_manipulation::travelling_salesman_using_bit_manipulation(dist, 1, 0, V, dp2) == 80);
|
||||
|
||||
std::cout << "3rd test-case: passed!" << "\n";
|
||||
std::vector<std::vector<uint32_t>> dp2(1 << V,
|
||||
std::vector<uint32_t>(V, -1));
|
||||
assert(bit_manipulation::travelling_salesman_using_bit_manipulation::
|
||||
travelling_salesman_using_bit_manipulation(dist, 1, 0, V, dp2) ==
|
||||
80);
|
||||
|
||||
std::cout << "3rd test-case: passed!"
|
||||
<< "\n";
|
||||
}
|
||||
|
||||
/**
|
||||
|
471
divide_and_conquer/strassen_matrix_multiplication.cpp
Normal file
471
divide_and_conquer/strassen_matrix_multiplication.cpp
Normal file
@ -0,0 +1,471 @@
|
||||
/**
|
||||
* @brief [Strassen's
|
||||
* algorithm](https://en.wikipedia.org/wiki/Strassen_algorithm) is one of the
|
||||
* methods for multiplying two matrices. It is one of the faster algorithms for
|
||||
* larger matrices than naive multiplication method.
|
||||
*
|
||||
* It involves dividing each matrices into 4 blocks, given they are evenly
|
||||
* divisible, and are combined with new defined matrices involving 7 matrix
|
||||
* multiplications instead of eight, yielding O(n^2.8073) complexity.
|
||||
*
|
||||
* @author [AshishYUO](https://github.com/AshishYUO)
|
||||
*/
|
||||
#include <cassert> /// For assert operation
|
||||
#include <chrono> /// For std::chrono; time measurement
|
||||
#include <iostream> /// For I/O operations
|
||||
#include <tuple> /// For std::tuple
|
||||
#include <vector> /// For creating dynamic arrays
|
||||
|
||||
/**
|
||||
* @namespace divide_and_conquer
|
||||
* @brief Divide and Conquer algorithms
|
||||
*/
|
||||
namespace divide_and_conquer {
|
||||
|
||||
/**
|
||||
* @namespace strassens_multiplication
|
||||
* @brief Namespace for performing strassen's multiplication
|
||||
*/
|
||||
namespace strassens_multiplication {
|
||||
|
||||
/// Complement of 0 is a max integer.
|
||||
constexpr size_t MAX_SIZE = ~0ULL;
|
||||
/**
|
||||
* @brief Matrix class.
|
||||
*/
|
||||
template <typename T,
|
||||
typename = typename std::enable_if<
|
||||
std::is_integral<T>::value || std::is_floating_point<T>::value,
|
||||
bool>::type>
|
||||
class Matrix {
|
||||
std::vector<std::vector<T>> _mat;
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Constructor
|
||||
* @tparam Integer ensuring integers are being evaluated and not other
|
||||
* data types.
|
||||
* @param size denoting the size of Matrix as size x size
|
||||
*/
|
||||
template <typename Integer,
|
||||
typename = typename std::enable_if<
|
||||
std::is_integral<Integer>::value, Integer>::type>
|
||||
explicit Matrix(const Integer size) {
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
_mat.emplace_back(std::vector<T>(size, 0));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Constructor
|
||||
* @tparam Integer ensuring integers are being evaluated and not other
|
||||
* data types.
|
||||
* @param rows denoting the total rows of Matrix
|
||||
* @param cols denoting the total elements in each row of Matrix
|
||||
*/
|
||||
template <typename Integer,
|
||||
typename = typename std::enable_if<
|
||||
std::is_integral<Integer>::value, Integer>::type>
|
||||
Matrix(const Integer rows, const Integer cols) {
|
||||
for (size_t i = 0; i < rows; ++i) {
|
||||
_mat.emplace_back(std::vector<T>(cols, 0));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the matrix shape
|
||||
* @returns pair of integer denoting total rows and columns
|
||||
*/
|
||||
inline std::pair<size_t, size_t> size() const {
|
||||
return {_mat.size(), _mat[0].size()};
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief returns the address of the element at ith place
|
||||
* (here ith row of the matrix)
|
||||
* @tparam Integer any valid integer
|
||||
* @param index index which is requested
|
||||
* @returns the address of the element (here ith row or array)
|
||||
*/
|
||||
template <typename Integer,
|
||||
typename = typename std::enable_if<
|
||||
std::is_integral<Integer>::value, Integer>::type>
|
||||
inline std::vector<T> &operator[](const Integer index) {
|
||||
return _mat[index];
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Creates a new matrix and returns a part of it.
|
||||
* @param row_start start of the row
|
||||
* @param row_end end of the row
|
||||
* @param col_start start of the col
|
||||
* @param col_end end of the column
|
||||
* @returns A slice of (row_end - row_start) x (col_end - col_start) size of
|
||||
* array starting from row_start row and col_start column
|
||||
*/
|
||||
Matrix slice(const size_t row_start, const size_t row_end = MAX_SIZE,
|
||||
const size_t col_start = MAX_SIZE,
|
||||
const size_t col_end = MAX_SIZE) const {
|
||||
const size_t h_size =
|
||||
(row_end != MAX_SIZE ? row_end : _mat.size()) - row_start;
|
||||
const size_t v_size = (col_end != MAX_SIZE ? col_end : _mat[0].size()) -
|
||||
(col_start != MAX_SIZE ? col_start : 0);
|
||||
Matrix result = Matrix<T>(h_size, v_size);
|
||||
|
||||
const size_t v_start = (col_start != MAX_SIZE ? col_start : 0);
|
||||
for (size_t i = 0; i < h_size; ++i) {
|
||||
for (size_t j = 0; j < v_size; ++j) {
|
||||
result._mat[i][j] = _mat[i + row_start][j + v_start];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Horizontally stack the matrix (one after the other)
|
||||
* @tparam Number any type of number
|
||||
* @param other the other matrix: note that this array is not modified
|
||||
* @returns void, but modifies the current array
|
||||
*/
|
||||
template <typename Number, typename = typename std::enable_if<
|
||||
std::is_integral<Number>::value ||
|
||||
std::is_floating_point<Number>::value,
|
||||
Number>::type>
|
||||
void h_stack(const Matrix<Number> &other) {
|
||||
assert(_mat.size() == other._mat.size());
|
||||
for (size_t i = 0; i < other._mat.size(); ++i) {
|
||||
for (size_t j = 0; j < other._mat[i].size(); ++j) {
|
||||
_mat[i].push_back(other._mat[i][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Horizontally stack the matrix (current matrix above the other)
|
||||
* @tparam Number any type of number (Integer or floating point)
|
||||
* @param other the other matrix: note that this array is not modified
|
||||
* @returns void, but modifies the current array
|
||||
*/
|
||||
template <typename Number, typename = typename std::enable_if<
|
||||
std::is_integral<Number>::value ||
|
||||
std::is_floating_point<Number>::value,
|
||||
Number>::type>
|
||||
void v_stack(const Matrix<Number> &other) {
|
||||
assert(_mat[0].size() == other._mat[0].size());
|
||||
for (size_t i = 0; i < other._mat.size(); ++i) {
|
||||
_mat.emplace_back(std::vector<T>(other._mat[i].size()));
|
||||
for (size_t j = 0; j < other._mat[i].size(); ++j) {
|
||||
_mat.back()[j] = other._mat[i][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Add two matrices and returns a new matrix
|
||||
* @tparam Number any real value to add
|
||||
* @param other Other matrix to add to this
|
||||
* @returns new matrix
|
||||
*/
|
||||
template <typename Number, typename = typename std::enable_if<
|
||||
std::is_integral<Number>::value ||
|
||||
std::is_floating_point<Number>::value,
|
||||
bool>::type>
|
||||
Matrix operator+(const Matrix<Number> &other) const {
|
||||
assert(this->size() == other.size());
|
||||
Matrix C = Matrix<Number>(_mat.size(), _mat[0].size());
|
||||
for (size_t i = 0; i < _mat.size(); ++i) {
|
||||
for (size_t j = 0; j < _mat[i].size(); ++j) {
|
||||
C._mat[i][j] = _mat[i][j] + other._mat[i][j];
|
||||
}
|
||||
}
|
||||
return C;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Add another matrices to current matrix
|
||||
* @tparam Number any real value to add
|
||||
* @param other Other matrix to add to this
|
||||
* @returns reference of current matrix
|
||||
*/
|
||||
template <typename Number, typename = typename std::enable_if<
|
||||
std::is_integral<Number>::value ||
|
||||
std::is_floating_point<Number>::value,
|
||||
bool>::type>
|
||||
Matrix &operator+=(const Matrix<Number> &other) const {
|
||||
assert(this->size() == other.size());
|
||||
for (size_t i = 0; i < _mat.size(); ++i) {
|
||||
for (size_t j = 0; j < _mat[i].size(); ++j) {
|
||||
_mat[i][j] += other._mat[i][j];
|
||||
}
|
||||
}
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Subtract two matrices and returns a new matrix
|
||||
* @tparam Number any real value to multiply
|
||||
* @param other Other matrix to subtract to this
|
||||
* @returns new matrix
|
||||
*/
|
||||
template <typename Number, typename = typename std::enable_if<
|
||||
std::is_integral<Number>::value ||
|
||||
std::is_floating_point<Number>::value,
|
||||
bool>::type>
|
||||
Matrix operator-(const Matrix<Number> &other) const {
|
||||
assert(this->size() == other.size());
|
||||
Matrix C = Matrix<Number>(_mat.size(), _mat[0].size());
|
||||
for (size_t i = 0; i < _mat.size(); ++i) {
|
||||
for (size_t j = 0; j < _mat[i].size(); ++j) {
|
||||
C._mat[i][j] = _mat[i][j] - other._mat[i][j];
|
||||
}
|
||||
}
|
||||
return C;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Subtract another matrices to current matrix
|
||||
* @tparam Number any real value to Subtract
|
||||
* @param other Other matrix to Subtract to this
|
||||
* @returns reference of current matrix
|
||||
*/
|
||||
template <typename Number, typename = typename std::enable_if<
|
||||
std::is_integral<Number>::value ||
|
||||
std::is_floating_point<Number>::value,
|
||||
bool>::type>
|
||||
Matrix &operator-=(const Matrix<Number> &other) const {
|
||||
assert(this->size() == other.size());
|
||||
for (size_t i = 0; i < _mat.size(); ++i) {
|
||||
for (size_t j = 0; j < _mat[i].size(); ++j) {
|
||||
_mat[i][j] -= other._mat[i][j];
|
||||
}
|
||||
}
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Multiply two matrices and returns a new matrix
|
||||
* @tparam Number any real value to multiply
|
||||
* @param other Other matrix to multiply to this
|
||||
* @returns new matrix
|
||||
*/
|
||||
template <typename Number, typename = typename std::enable_if<
|
||||
std::is_integral<Number>::value ||
|
||||
std::is_floating_point<Number>::value,
|
||||
bool>::type>
|
||||
inline Matrix operator*(const Matrix<Number> &other) const {
|
||||
assert(_mat[0].size() == other._mat.size());
|
||||
auto size = this->size();
|
||||
const size_t row = size.first, col = size.second;
|
||||
// Main condition for applying strassen's method:
|
||||
// 1: matrix should be a square matrix
|
||||
// 2: matrix should be of even size (mat.size() % 2 == 0)
|
||||
return (row == col && (row & 1) == 0)
|
||||
? this->strassens_multiplication(other)
|
||||
: this->naive_multiplication(other);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Multiply matrix with a number and returns a new matrix
|
||||
* @tparam Number any real value to multiply
|
||||
* @param other Other real number to multiply to current matrix
|
||||
* @returns new matrix
|
||||
*/
|
||||
template <typename Number, typename = typename std::enable_if<
|
||||
std::is_integral<Number>::value ||
|
||||
std::is_floating_point<Number>::value,
|
||||
bool>::type>
|
||||
inline Matrix operator*(const Number other) const {
|
||||
Matrix C = Matrix<Number>(_mat.size(), _mat[0].size());
|
||||
for (size_t i = 0; i < _mat.size(); ++i) {
|
||||
for (size_t j = 0; j < _mat[i].size(); ++j) {
|
||||
C._mat[i][j] = _mat[i][j] * other;
|
||||
}
|
||||
}
|
||||
return C;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Multiply a number to current matrix
|
||||
* @tparam Number any real value to multiply
|
||||
* @param other Other matrix to multiply to this
|
||||
* @returns reference of current matrix
|
||||
*/
|
||||
template <typename Number, typename = typename std::enable_if<
|
||||
std::is_integral<Number>::value ||
|
||||
std::is_floating_point<Number>::value,
|
||||
bool>::type>
|
||||
Matrix &operator*=(const Number other) const {
|
||||
for (size_t i = 0; i < _mat.size(); ++i) {
|
||||
for (size_t j = 0; j < _mat[i].size(); ++j) {
|
||||
_mat[i][j] *= other;
|
||||
}
|
||||
}
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Naive multiplication performed on this
|
||||
* @tparam Number any real value to multiply
|
||||
* @param other Other matrix to multiply to this
|
||||
* @returns new matrix
|
||||
*/
|
||||
template <typename Number, typename = typename std::enable_if<
|
||||
std::is_integral<Number>::value ||
|
||||
std::is_floating_point<Number>::value,
|
||||
bool>::type>
|
||||
Matrix naive_multiplication(const Matrix<Number> &other) const {
|
||||
Matrix C = Matrix<Number>(_mat.size(), other._mat[0].size());
|
||||
|
||||
for (size_t i = 0; i < _mat.size(); ++i) {
|
||||
for (size_t k = 0; k < _mat[0].size(); ++k) {
|
||||
for (size_t j = 0; j < other._mat[0].size(); ++j) {
|
||||
C._mat[i][j] += _mat[i][k] * other._mat[k][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
return C;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Strassens method of multiplying two matrices
|
||||
* References: https://en.wikipedia.org/wiki/Strassen_algorithm
|
||||
* @tparam Number any real value to multiply
|
||||
* @param other Other matrix to multiply to this
|
||||
* @returns new matrix
|
||||
*/
|
||||
template <typename Number, typename = typename std::enable_if<
|
||||
std::is_integral<Number>::value ||
|
||||
std::is_floating_point<Number>::value,
|
||||
bool>::type>
|
||||
Matrix strassens_multiplication(const Matrix<Number> &other) const {
|
||||
const size_t size = _mat.size();
|
||||
// Base case: when a matrix is small enough for faster naive
|
||||
// multiplication, or the matrix is of odd size, then go with the naive
|
||||
// multiplication route;
|
||||
// else; go with the strassen's method.
|
||||
if (size <= 64ULL || (size & 1ULL)) {
|
||||
return this->naive_multiplication(other);
|
||||
} else {
|
||||
const Matrix<Number>
|
||||
A = this->slice(0ULL, size >> 1, 0ULL, size >> 1),
|
||||
B = this->slice(0ULL, size >> 1, size >> 1, size),
|
||||
C = this->slice(size >> 1, size, 0ULL, size >> 1),
|
||||
D = this->slice(size >> 1, size, size >> 1, size),
|
||||
E = other.slice(0ULL, size >> 1, 0ULL, size >> 1),
|
||||
F = other.slice(0ULL, size >> 1, size >> 1, size),
|
||||
G = other.slice(size >> 1, size, 0ULL, size >> 1),
|
||||
H = other.slice(size >> 1, size, size >> 1, size);
|
||||
|
||||
Matrix P1 = A.strassens_multiplication(F - H);
|
||||
Matrix P2 = (A + B).strassens_multiplication(H);
|
||||
Matrix P3 = (C + D).strassens_multiplication(E);
|
||||
Matrix P4 = D.strassens_multiplication(G - E);
|
||||
Matrix P5 = (A + D).strassens_multiplication(E + H);
|
||||
Matrix P6 = (B - D).strassens_multiplication(G + H);
|
||||
Matrix P7 = (A - C).strassens_multiplication(E + F);
|
||||
|
||||
// Building final matrix C11 would be
|
||||
// [ | ]
|
||||
// [ C11 | C12 ]
|
||||
// C = [ ____ | ____ ]
|
||||
// [ | ]
|
||||
// [ C21 | C22 ]
|
||||
// [ | ]
|
||||
|
||||
Matrix C11 = P5 + P4 - P2 + P6;
|
||||
Matrix C12 = P1 + P2;
|
||||
Matrix C21 = P3 + P4;
|
||||
Matrix C22 = P1 + P5 - P3 - P7;
|
||||
|
||||
C21.h_stack(C22);
|
||||
C11.h_stack(C12);
|
||||
C11.v_stack(C21);
|
||||
|
||||
return C11;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compares two matrices if each of them are equal or not
|
||||
* @param other other matrix to compare
|
||||
* @returns whether they are equal or not
|
||||
*/
|
||||
bool operator==(const Matrix<T> &other) const {
|
||||
if (_mat.size() != other._mat.size() ||
|
||||
_mat[0].size() != other._mat[0].size()) {
|
||||
return false;
|
||||
}
|
||||
for (size_t i = 0; i < _mat.size(); ++i) {
|
||||
for (size_t j = 0; j < _mat[i].size(); ++j) {
|
||||
if (_mat[i][j] != other._mat[i][j]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
friend std::ostream &operator<<(std::ostream &out, const Matrix<T> &mat) {
|
||||
for (auto &row : mat._mat) {
|
||||
for (auto &elem : row) {
|
||||
out << elem << " ";
|
||||
}
|
||||
out << "\n";
|
||||
}
|
||||
return out << "\n";
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace strassens_multiplication
|
||||
|
||||
} // namespace divide_and_conquer
|
||||
|
||||
/**
|
||||
* @brief Self-test implementations
|
||||
* @returns void
|
||||
*/
|
||||
static void test() {
|
||||
const size_t s = 512;
|
||||
auto matrix_demo =
|
||||
divide_and_conquer::strassens_multiplication::Matrix<size_t>(s, s);
|
||||
|
||||
for (size_t i = 0; i < s; ++i) {
|
||||
for (size_t j = 0; j < s; ++j) {
|
||||
matrix_demo[i][j] = i + j;
|
||||
}
|
||||
}
|
||||
|
||||
auto matrix_demo2 =
|
||||
divide_and_conquer::strassens_multiplication::Matrix<size_t>(s, s);
|
||||
for (size_t i = 0; i < s; ++i) {
|
||||
for (size_t j = 0; j < s; ++j) {
|
||||
matrix_demo2[i][j] = 2 + i + j;
|
||||
}
|
||||
}
|
||||
|
||||
auto start = std::chrono::system_clock::now();
|
||||
auto Mat3 = matrix_demo2 * matrix_demo;
|
||||
auto end = std::chrono::system_clock::now();
|
||||
|
||||
std::chrono::duration<double> time = (end - start);
|
||||
std::cout << "Strassen time: " << time.count() << "s" << std::endl;
|
||||
|
||||
start = std::chrono::system_clock::now();
|
||||
auto conf = matrix_demo2.naive_multiplication(matrix_demo);
|
||||
end = std::chrono::system_clock::now();
|
||||
|
||||
time = end - start;
|
||||
std::cout << "Normal time: " << time.count() << "s" << std::endl;
|
||||
|
||||
// std::cout << Mat3 << conf << std::endl;
|
||||
assert(Mat3 == conf);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief main function
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main() {
|
||||
test(); // run self-test implementation
|
||||
return 0;
|
||||
}
|
@ -16,8 +16,8 @@
|
||||
|
||||
#include <cassert> /// for std::assert
|
||||
#include <iostream> /// for IO operations
|
||||
#include <vector> /// for std::vector
|
||||
#include <unordered_map> /// for unordered map
|
||||
#include <vector> /// for std::vector
|
||||
|
||||
/**
|
||||
* @namespace dynamic_programming
|
||||
@ -40,12 +40,9 @@ namespace subset_sum {
|
||||
* @param dp the map storing the results
|
||||
* @returns true/false based on if the target sum subset exists or not.
|
||||
*/
|
||||
bool subset_sum_recursion(
|
||||
const std::vector<int> &arr,
|
||||
int targetSum,
|
||||
bool subset_sum_recursion(const std::vector<int> &arr, int targetSum,
|
||||
std::vector<std::unordered_map<int, bool>> *dp,
|
||||
int index = 0) {
|
||||
|
||||
if (targetSum == 0) { // Found a valid subset with required sum.
|
||||
return true;
|
||||
}
|
||||
@ -57,8 +54,9 @@ bool subset_sum_recursion(
|
||||
return (*dp)[index][targetSum];
|
||||
}
|
||||
|
||||
bool ans = subset_sum_recursion(arr, targetSum - arr[index], dp, index + 1)
|
||||
|| subset_sum_recursion(arr, targetSum, dp, index + 1);
|
||||
bool ans =
|
||||
subset_sum_recursion(arr, targetSum - arr[index], dp, index + 1) ||
|
||||
subset_sum_recursion(arr, targetSum, dp, index + 1);
|
||||
(*dp)[index][targetSum] = ans; // Save ans in dp map.
|
||||
return ans;
|
||||
}
|
||||
|
@ -3,27 +3,29 @@
|
||||
* @file
|
||||
*
|
||||
* @brief
|
||||
* [Borůvkas Algorithm](https://en.wikipedia.org/wiki/Borůvka's_algorithm) to find the Minimum Spanning Tree
|
||||
* [Borůvkas Algorithm](https://en.wikipedia.org/wiki/Borůvka's_algorithm) to
|
||||
*find the Minimum Spanning Tree
|
||||
*
|
||||
*
|
||||
* @details
|
||||
* Boruvka's algorithm is a greepy algorithm to find the MST by starting with small trees, and combining
|
||||
* them to build bigger ones.
|
||||
* Boruvka's algorithm is a greepy algorithm to find the MST by starting with
|
||||
*small trees, and combining them to build bigger ones.
|
||||
* 1. Creates a group for every vertex.
|
||||
* 2. looks through each edge of every vertex for the smallest weight. Keeps track
|
||||
* of the smallest edge for each of the current groups.
|
||||
* 3. Combine each group with the group it shares its smallest edge, adding the smallest
|
||||
* edge to the MST.
|
||||
* 2. looks through each edge of every vertex for the smallest weight. Keeps
|
||||
*track of the smallest edge for each of the current groups.
|
||||
* 3. Combine each group with the group it shares its smallest edge, adding the
|
||||
*smallest edge to the MST.
|
||||
* 4. Repeat step 2-3 until all vertices are combined into a single group.
|
||||
*
|
||||
* It assumes that the graph is connected. Non-connected edges can be represented using 0 or INT_MAX
|
||||
* It assumes that the graph is connected. Non-connected edges can be
|
||||
*represented using 0 or INT_MAX
|
||||
*
|
||||
*/
|
||||
|
||||
#include <iostream> /// for IO operations
|
||||
#include <vector> /// for std::vector
|
||||
#include <cassert> /// for assert
|
||||
#include <climits> /// for INT_MAX
|
||||
#include <iostream> /// for IO operations
|
||||
#include <vector> /// for std::vector
|
||||
|
||||
/**
|
||||
* @namespace greedy_algorithms
|
||||
@ -32,7 +34,8 @@
|
||||
namespace greedy_algorithms {
|
||||
/**
|
||||
* @namespace boruvkas_minimum_spanning_tree
|
||||
* @brief Functions for the [Borůvkas Algorithm](https://en.wikipedia.org/wiki/Borůvka's_algorithm) implementation
|
||||
* @brief Functions for the [Borůvkas
|
||||
* Algorithm](https://en.wikipedia.org/wiki/Borůvka's_algorithm) implementation
|
||||
*/
|
||||
namespace boruvkas_minimum_spanning_tree {
|
||||
/**
|
||||
@ -55,7 +58,6 @@ int findParent(std::vector<std::pair<int,int>> parent, const int v) {
|
||||
* @returns the MST as 2d vectors
|
||||
*/
|
||||
std::vector<std::vector<int>> boruvkas(std::vector<std::vector<int>> adj) {
|
||||
|
||||
size_t size = adj.size();
|
||||
size_t total_groups = size;
|
||||
|
||||
@ -63,7 +65,8 @@ std::vector<std::vector<int>> boruvkas(std::vector<std::vector<int>> adj) {
|
||||
return adj;
|
||||
}
|
||||
|
||||
// Stores the current Minimum Spanning Tree. As groups are combined, they are added to the MST
|
||||
// Stores the current Minimum Spanning Tree. As groups are combined, they
|
||||
// are added to the MST
|
||||
std::vector<std::vector<int>> MST(size, std::vector<int>(size, INT_MAX));
|
||||
for (int i = 0; i < size; i++) {
|
||||
MST[i][i] = 0;
|
||||
@ -71,37 +74,41 @@ std::vector<std::vector<int>> boruvkas(std::vector<std::vector<int>> adj) {
|
||||
|
||||
// Step 1: Create a group for each vertex
|
||||
|
||||
// Stores the parent of the vertex and its current depth, both initialized to 0
|
||||
// Stores the parent of the vertex and its current depth, both initialized
|
||||
// to 0
|
||||
std::vector<std::pair<int, int>> parent(size, std::make_pair(0, 0));
|
||||
|
||||
for (int i = 0; i < size; i++) {
|
||||
parent[i].first = i; // Sets parent of each vertex to itself, depth remains 0
|
||||
parent[i].first =
|
||||
i; // Sets parent of each vertex to itself, depth remains 0
|
||||
}
|
||||
|
||||
// Repeat until all are in a single group
|
||||
while (total_groups > 1) {
|
||||
std::vector<std::pair<int, int>> smallest_edge(
|
||||
size, std::make_pair(-1, -1)); // Pairing: start node, end node
|
||||
|
||||
std::vector<std::pair<int,int>> smallest_edge(size, std::make_pair(-1, -1)); //Pairing: start node, end node
|
||||
|
||||
// Step 2: Look throught each vertex for its smallest edge, only using the right half of the adj matrix
|
||||
// Step 2: Look throught each vertex for its smallest edge, only using
|
||||
// the right half of the adj matrix
|
||||
for (int i = 0; i < size; i++) {
|
||||
for (int j = i + 1; j < size; j++) {
|
||||
|
||||
if (adj[i][j] == INT_MAX || adj[i][j] == 0) { // No connection
|
||||
continue;
|
||||
}
|
||||
|
||||
// Finds the parents of the start and end points to make sure they arent in the same group
|
||||
// Finds the parents of the start and end points to make sure
|
||||
// they arent in the same group
|
||||
int parentA = findParent(parent, i);
|
||||
int parentB = findParent(parent, j);
|
||||
|
||||
if (parentA != parentB) {
|
||||
|
||||
// Grabs the start and end points for the first groups current smallest edge
|
||||
// Grabs the start and end points for the first groups
|
||||
// current smallest edge
|
||||
int start = smallest_edge[parentA].first;
|
||||
int end = smallest_edge[parentA].second;
|
||||
|
||||
// If there is no current smallest edge, or the new edge is smaller, records the new smallest
|
||||
// If there is no current smallest edge, or the new edge is
|
||||
// smaller, records the new smallest
|
||||
if (start == -1 || adj[i][j] < adj[start][end]) {
|
||||
smallest_edge[parentA].first = i;
|
||||
smallest_edge[parentA].second = j;
|
||||
@ -122,10 +129,8 @@ std::vector<std::vector<int>> boruvkas(std::vector<std::vector<int>> adj) {
|
||||
// Step 3: Combine the groups based off their smallest edge
|
||||
|
||||
for (int i = 0; i < size; i++) {
|
||||
|
||||
// Makes sure the smallest edge exists
|
||||
if (smallest_edge[i].first != -1) {
|
||||
|
||||
// Start and end points for the groups smallest edge
|
||||
int start = smallest_edge[i].first;
|
||||
int end = smallest_edge[i].second;
|
||||
@ -134,23 +139,25 @@ std::vector<std::vector<int>> boruvkas(std::vector<std::vector<int>> adj) {
|
||||
int parentA = i;
|
||||
int parentB = findParent(parent, end);
|
||||
|
||||
// Makes sure the two nodes dont share the same parent. Would happen if the two groups have been
|
||||
// Makes sure the two nodes dont share the same parent. Would
|
||||
// happen if the two groups have been
|
||||
// merged previously through a common shortest edge
|
||||
if (parentA == parentB) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Tries to balance the trees as much as possible as they are merged. The parent of the shallower
|
||||
// Tries to balance the trees as much as possible as they are
|
||||
// merged. The parent of the shallower
|
||||
// tree will be pointed to the parent of the deeper tree.
|
||||
if (parent[parentA].second < parent[parentB].second) {
|
||||
parent[parentB].first = parentA; // New parent
|
||||
parent[parentB].second++; // Increase depth
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
parent[parentA].first = parentB;
|
||||
parent[parentA].second++;
|
||||
}
|
||||
// Add the connection to the MST, using both halves of the adj matrix
|
||||
// Add the connection to the MST, using both halves of the adj
|
||||
// matrix
|
||||
MST[start][end] = adj[start][end];
|
||||
MST[end][start] = adj[end][start];
|
||||
total_groups--; // one fewer group
|
||||
@ -166,7 +173,6 @@ std::vector<std::vector<int>> boruvkas(std::vector<std::vector<int>> adj) {
|
||||
* @returns the int size of the tree
|
||||
*/
|
||||
int test_findGraphSum(std::vector<std::vector<int>> adj) {
|
||||
|
||||
size_t size = adj.size();
|
||||
int sum = 0;
|
||||
|
||||
@ -190,25 +196,24 @@ int test_findGraphSum(std::vector<std::vector<int>> adj) {
|
||||
static void tests() {
|
||||
std::cout << "Starting tests...\n\n";
|
||||
std::vector<std::vector<int>> graph = {
|
||||
{0, 5, INT_MAX, 3, INT_MAX} ,
|
||||
{5, 0, 2, INT_MAX, 5} ,
|
||||
{INT_MAX, 2, 0, INT_MAX, 3} ,
|
||||
{3, INT_MAX, INT_MAX, 0, INT_MAX} ,
|
||||
{0, 5, INT_MAX, 3, INT_MAX}, {5, 0, 2, INT_MAX, 5},
|
||||
{INT_MAX, 2, 0, INT_MAX, 3}, {3, INT_MAX, INT_MAX, 0, INT_MAX},
|
||||
{INT_MAX, 5, 3, INT_MAX, 0},
|
||||
};
|
||||
std::vector<std::vector<int>> MST = greedy_algorithms::boruvkas_minimum_spanning_tree::boruvkas(graph);
|
||||
assert(greedy_algorithms::boruvkas_minimum_spanning_tree::test_findGraphSum(MST) == 13);
|
||||
std::vector<std::vector<int>> MST =
|
||||
greedy_algorithms::boruvkas_minimum_spanning_tree::boruvkas(graph);
|
||||
assert(greedy_algorithms::boruvkas_minimum_spanning_tree::test_findGraphSum(
|
||||
MST) == 13);
|
||||
std::cout << "1st test passed!" << std::endl;
|
||||
|
||||
graph = {
|
||||
{ 0, 2, 0, 6, 0 },
|
||||
graph = {{0, 2, 0, 6, 0},
|
||||
{2, 0, 3, 8, 5},
|
||||
{0, 3, 0, 0, 7},
|
||||
{6, 8, 0, 0, 9},
|
||||
{ 0, 5, 7, 9, 0 }
|
||||
};
|
||||
{0, 5, 7, 9, 0}};
|
||||
MST = greedy_algorithms::boruvkas_minimum_spanning_tree::boruvkas(graph);
|
||||
assert(greedy_algorithms::boruvkas_minimum_spanning_tree::test_findGraphSum(MST) == 16);
|
||||
assert(greedy_algorithms::boruvkas_minimum_spanning_tree::test_findGraphSum(
|
||||
MST) == 16);
|
||||
std::cout << "2nd test passed!" << std::endl;
|
||||
}
|
||||
|
||||
|
30
range_queries/sparse_table.cpp
Executable file → Normal file
30
range_queries/sparse_table.cpp
Executable file → Normal file
@ -1,21 +1,23 @@
|
||||
/**
|
||||
* @file sparse_table.cpp
|
||||
* @brief Implementation of [Sparse Table](https://en.wikipedia.org/wiki/Range_minimum_query) data structure
|
||||
* @brief Implementation of [Sparse
|
||||
* Table](https://en.wikipedia.org/wiki/Range_minimum_query) data structure
|
||||
*
|
||||
* @details
|
||||
* Sparse Table is a data structure, that allows answering range queries.
|
||||
* It can answer most range queries in O(logn), but its true power is answering range minimum queries
|
||||
* or equivalent range maximum queries). For those queries it can compute the answer in O(1) time.
|
||||
* It can answer most range queries in O(logn), but its true power is answering
|
||||
* range minimum queries or equivalent range maximum queries). For those queries
|
||||
* it can compute the answer in O(1) time.
|
||||
*
|
||||
* * Running Time Complexity \n
|
||||
* * Build : O(NlogN) \n
|
||||
* * Range Query : O(1) \n
|
||||
*/
|
||||
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
|
||||
/**
|
||||
* @namespace range_queries
|
||||
@ -51,7 +53,8 @@ std::vector<T> computeLogs(const std::vector<T>& A) {
|
||||
* @return created sparse table data structure
|
||||
*/
|
||||
template <typename T>
|
||||
std::vector<std::vector<T> > buildTable(const std::vector<T>& A, const std::vector<T>& logs) {
|
||||
std::vector<std::vector<T> > buildTable(const std::vector<T>& A,
|
||||
const std::vector<T>& logs) {
|
||||
int n = A.size();
|
||||
std::vector<std::vector<T> > table(20, std::vector<T>(n + 5, 0));
|
||||
int curLen = 0;
|
||||
@ -60,9 +63,9 @@ std::vector<std::vector<T> > buildTable(const std::vector<T>& A, const std::vect
|
||||
for (int j = 0; j + curLen < n; j++) {
|
||||
if (curLen == 1) {
|
||||
table[i][j] = A[j];
|
||||
}
|
||||
else {
|
||||
table[i][j] = std::min(table[i-1][j], table[i-1][j + curLen/2]);
|
||||
} else {
|
||||
table[i][j] =
|
||||
std::min(table[i - 1][j], table[i - 1][j + curLen / 2]);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -78,12 +81,13 @@ std::vector<std::vector<T> > buildTable(const std::vector<T>& A, const std::vect
|
||||
* @return minimum value for the [beg, end] range for the input array
|
||||
*/
|
||||
template <typename T>
|
||||
int getMinimum(int beg, int end, const std::vector<T>& logs, const std::vector<std::vector<T> >& table) {
|
||||
int getMinimum(int beg, int end, const std::vector<T>& logs,
|
||||
const std::vector<std::vector<T> >& table) {
|
||||
int p = logs[end - beg + 1];
|
||||
int pLen = 1 << p;
|
||||
return std::min(table[p][beg], table[p][end - pLen + 1]);
|
||||
}
|
||||
}
|
||||
} // namespace sparse_table
|
||||
} // namespace range_queries
|
||||
|
||||
/**
|
||||
@ -92,10 +96,10 @@ int getMinimum(int beg, int end, const std::vector<T>& logs, const std::vector<s
|
||||
int main() {
|
||||
std::vector<int> A{1, 2, 0, 3, 9};
|
||||
std::vector<int> logs = range_queries::sparse_table::computeLogs(A);
|
||||
std::vector<std::vector<int> > table = range_queries::sparse_table::buildTable(A, logs);
|
||||
std::vector<std::vector<int> > table =
|
||||
range_queries::sparse_table::buildTable(A, logs);
|
||||
assert(range_queries::sparse_table::getMinimum(0, 0, logs, table) == 1);
|
||||
assert(range_queries::sparse_table::getMinimum(0, 4, logs, table) == 0);
|
||||
assert(range_queries::sparse_table::getMinimum(2, 4, logs, table) == 0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user