mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
Merge pull request #906 from kvedala/lu_decompose
enhancement: LU decompose to header file and self-tests
This commit is contained in:
commit
6791651b68
@ -140,6 +140,7 @@
|
||||
* [Gaussian Elimination](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/gaussian_elimination.cpp)
|
||||
* [Golden Search Extrema](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/golden_search_extrema.cpp)
|
||||
* [Lu Decompose](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/lu_decompose.cpp)
|
||||
* [Lu Decomposition](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/lu_decomposition.h)
|
||||
* [Newton Raphson Method](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/newton_raphson_method.cpp)
|
||||
* [Ode Forward Euler](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/ode_forward_euler.cpp)
|
||||
* [Ode Midpoint Euler](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/ode_midpoint_euler.cpp)
|
||||
|
@ -4,76 +4,18 @@
|
||||
* square matrix
|
||||
* \author [Krishna Vedala](https://github.com/kvedala)
|
||||
*/
|
||||
#include <cassert>
|
||||
#include <ctime>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#ifdef _OPENMP
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
/** Perform LU decomposition on matrix
|
||||
* \param[in] A matrix to decompose
|
||||
* \param[out] L output L matrix
|
||||
* \param[out] U output U matrix
|
||||
* \returns 0 if no errors
|
||||
* \returns negative if error occurred
|
||||
*/
|
||||
int lu_decomposition(const std::vector<std::vector<double>> &A,
|
||||
std::vector<std::vector<double>> *L,
|
||||
std::vector<std::vector<double>> *U) {
|
||||
int row, col, j;
|
||||
int mat_size = A.size();
|
||||
|
||||
if (mat_size != A[0].size()) {
|
||||
// check matrix is a square matrix
|
||||
std::cerr << "Not a square matrix!\n";
|
||||
return -1;
|
||||
}
|
||||
|
||||
// regularize each row
|
||||
for (row = 0; row < mat_size; row++) {
|
||||
// Upper triangular matrix
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (col = row; col < mat_size; col++) {
|
||||
// Summation of L[i,j] * U[j,k]
|
||||
double lu_sum = 0.;
|
||||
for (j = 0; j < row; j++) lu_sum += L[0][row][j] * U[0][j][col];
|
||||
|
||||
// Evaluate U[i,k]
|
||||
U[0][row][col] = A[row][col] - lu_sum;
|
||||
}
|
||||
|
||||
// Lower triangular matrix
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (col = row; col < mat_size; col++) {
|
||||
if (row == col) {
|
||||
L[0][row][col] = 1.;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Summation of L[i,j] * U[j,k]
|
||||
double lu_sum = 0.;
|
||||
for (j = 0; j < row; j++) lu_sum += L[0][col][j] * U[0][j][row];
|
||||
|
||||
// Evaluate U[i,k]
|
||||
L[0][col][row] = (A[col][row] - lu_sum) / U[0][row][row];
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
#include "./lu_decomposition.h"
|
||||
|
||||
/**
|
||||
* operator to print a matrix
|
||||
*/
|
||||
template <typename T>
|
||||
std::ostream &operator<<(std::ostream &out,
|
||||
std::vector<std::vector<T>> const &v) {
|
||||
std::ostream &operator<<(std::ostream &out, matrix<T> const &v) {
|
||||
const int width = 10;
|
||||
const char separator = ' ';
|
||||
|
||||
@ -87,26 +29,21 @@ std::ostream &operator<<(std::ostream &out,
|
||||
return out;
|
||||
}
|
||||
|
||||
/** Main function */
|
||||
int main(int argc, char **argv) {
|
||||
/**
|
||||
* Test LU decomposition
|
||||
* \todo better ways to self-check a matrix output?
|
||||
*/
|
||||
void test1() {
|
||||
int mat_size = 3; // default matrix size
|
||||
const int range = 50;
|
||||
const int range2 = range >> 1;
|
||||
|
||||
if (argc == 2)
|
||||
mat_size = atoi(argv[1]);
|
||||
|
||||
std::srand(std::time(NULL)); // random number initializer
|
||||
|
||||
/* Create a square matrix with random values */
|
||||
std::vector<std::vector<double>> A(mat_size);
|
||||
std::vector<std::vector<double>> L(mat_size); // output
|
||||
std::vector<std::vector<double>> U(mat_size); // output
|
||||
matrix<double> A(mat_size, std::valarray<double>(mat_size));
|
||||
matrix<double> L(mat_size, std::valarray<double>(mat_size)); // output
|
||||
matrix<double> U(mat_size, std::valarray<double>(mat_size)); // output
|
||||
for (int i = 0; i < mat_size; i++) {
|
||||
// calloc so that all valeus are '0' by default
|
||||
A[i] = std::vector<double>(mat_size);
|
||||
L[i] = std::vector<double>(mat_size);
|
||||
U[i] = std::vector<double>(mat_size);
|
||||
for (int j = 0; j < mat_size; j++)
|
||||
/* create random values in the limits [-range2, range-1] */
|
||||
A[i][j] = static_cast<double>(std::rand() % range - range2);
|
||||
@ -121,6 +58,33 @@ int main(int argc, char **argv) {
|
||||
std::cout << "A = \n" << A << "\n";
|
||||
std::cout << "L = \n" << L << "\n";
|
||||
std::cout << "U = \n" << U << "\n";
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Test determinant computation using LU decomposition
|
||||
*/
|
||||
void test2() {
|
||||
std::cout << "Determinant test 1...";
|
||||
matrix<int> A1({{1, 2, 3}, {4, 9, 6}, {7, 8, 9}});
|
||||
assert(determinant_lu(A1) == -48);
|
||||
std::cout << "passed\n";
|
||||
|
||||
std::cout << "Determinant test 2...";
|
||||
matrix<int> A2({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}});
|
||||
assert(determinant_lu(A2) == 0);
|
||||
std::cout << "passed\n";
|
||||
|
||||
std::cout << "Determinant test 3...";
|
||||
matrix<float> A3({{1.2, 2.3, 3.4}, {4.5, 5.6, 6.7}, {7.8, 8.9, 9.0}});
|
||||
assert(determinant_lu(A3) == 3.63);
|
||||
std::cout << "passed\n";
|
||||
}
|
||||
|
||||
/** Main function */
|
||||
int main(int argc, char **argv) {
|
||||
std::srand(std::time(NULL)); // random number initializer
|
||||
|
||||
test1();
|
||||
test2();
|
||||
return 0;
|
||||
}
|
||||
|
102
numerical_methods/lu_decomposition.h
Normal file
102
numerical_methods/lu_decomposition.h
Normal file
@ -0,0 +1,102 @@
|
||||
/**
|
||||
* @file lu_decomposition.h
|
||||
* @author [Krishna Vedala](https://github.com/kvedala)
|
||||
* @brief Functions associated with [LU
|
||||
* Decomposition](https://en.wikipedia.org/wiki/LU_decomposition)
|
||||
* of a square matrix.
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
#include <valarray>
|
||||
#include <vector>
|
||||
#ifdef _OPENMP
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
/** Define matrix type as a `std::vector` of `std::valarray` */
|
||||
template <typename T>
|
||||
using matrix = std::vector<std::valarray<T>>;
|
||||
|
||||
/** Perform LU decomposition on matrix
|
||||
* \param[in] A matrix to decompose
|
||||
* \param[out] L output L matrix
|
||||
* \param[out] U output U matrix
|
||||
* \returns 0 if no errors
|
||||
* \returns negative if error occurred
|
||||
*/
|
||||
template <typename T>
|
||||
int lu_decomposition(const matrix<T> &A, matrix<double> *L, matrix<double> *U) {
|
||||
int row, col, j;
|
||||
int mat_size = A.size();
|
||||
|
||||
if (mat_size != A[0].size()) {
|
||||
// check matrix is a square matrix
|
||||
std::cerr << "Not a square matrix!\n";
|
||||
return -1;
|
||||
}
|
||||
|
||||
// regularize each row
|
||||
for (row = 0; row < mat_size; row++) {
|
||||
// Upper triangular matrix
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (col = row; col < mat_size; col++) {
|
||||
// Summation of L[i,j] * U[j,k]
|
||||
double lu_sum = 0.;
|
||||
for (j = 0; j < row; j++) {
|
||||
lu_sum += L[0][row][j] * U[0][j][col];
|
||||
}
|
||||
|
||||
// Evaluate U[i,k]
|
||||
U[0][row][col] = A[row][col] - lu_sum;
|
||||
}
|
||||
|
||||
// Lower triangular matrix
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (col = row; col < mat_size; col++) {
|
||||
if (row == col) {
|
||||
L[0][row][col] = 1.;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Summation of L[i,j] * U[j,k]
|
||||
double lu_sum = 0.;
|
||||
for (j = 0; j < row; j++) {
|
||||
lu_sum += L[0][col][j] * U[0][j][row];
|
||||
}
|
||||
|
||||
// Evaluate U[i,k]
|
||||
L[0][col][row] = (A[col][row] - lu_sum) / U[0][row][row];
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compute determinant of an NxN square matrix using LU decomposition.
|
||||
* Using LU decomposition, the determinant is given by the product of diagonal
|
||||
* elements of matrices L and U.
|
||||
*
|
||||
* @tparam T datatype of input matrix - int, unsigned int, double, etc
|
||||
* @param A input square matrix
|
||||
* @return determinant of matrix A
|
||||
*/
|
||||
template <typename T>
|
||||
double determinant_lu(const matrix<T> &A) {
|
||||
matrix<double> L(A.size(), std::valarray<double>(A.size()));
|
||||
matrix<double> U(A.size(), std::valarray<double>(A.size()));
|
||||
|
||||
if (lu_decomposition(A, &L, &U) < 0)
|
||||
return 0;
|
||||
|
||||
double result = 1.f;
|
||||
for (size_t i = 0; i < A.size(); i++) {
|
||||
result *= L[i][i] * U[i][i];
|
||||
}
|
||||
return result;
|
||||
}
|
Loading…
Reference in New Issue
Block a user