Merge branch 'master' into modify_text_search

This commit is contained in:
David Leal 2021-10-14 13:27:45 -05:00 committed by GitHub
commit 6a8f3a4e6a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 282 additions and 21 deletions

View File

@ -266,6 +266,7 @@
* [Addition Rule](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/addition_rule.cpp) * [Addition Rule](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/addition_rule.cpp)
* [Bayes Theorem](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/bayes_theorem.cpp) * [Bayes Theorem](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/bayes_theorem.cpp)
* [Binomial Dist](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/binomial_dist.cpp) * [Binomial Dist](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/binomial_dist.cpp)
* [Geometric Dist](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/geometric_dist.cpp)
* [Poisson Dist](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/poisson_dist.cpp) * [Poisson Dist](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/poisson_dist.cpp)
* [Windowed Median](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/windowed_median.cpp) * [Windowed Median](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/windowed_median.cpp)

View File

@ -36,19 +36,23 @@ void show() {
int main() { int main() {
int ch, x; int ch, x;
do { do {
std::cout << "\n0. Exit or Ctrl+C";
std::cout << "\n1. Push"; std::cout << "\n1. Push";
std::cout << "\n2. Pop"; std::cout << "\n2. Pop";
std::cout << "\n3. Print"; std::cout << "\n3. Print";
std::cout << "\nEnter Your Choice: "; std::cout << "\nEnter Your Choice: ";
std::cin >> ch; std::cin >> ch;
if (ch == 1) { switch(ch){
std::cout << "\nInsert : "; case 0: break;
case 1: std::cout << "\nInsert : ";
std::cin >> x; std::cin >> x;
push(x); push(x);
} else if (ch == 2) { break;
pop(); case 2: pop();
} else if (ch == 3) { break;
show(); case 3: show();
break;
default: std::cout << "Invalid option!\n"; break;
} }
} while (ch != 0); } while (ch != 0);

View File

@ -1,21 +1,41 @@
// Program to check whether a number is an armstrong number or not // Program to check whether a number is an armstrong number or not
#include <iostream> #include <iostream>
#include <cmath>
using std::cin; using std::cin;
using std::cout; using std::cout;
int main() { int main() {
int n, k, d, s = 0; int n = 0, temp = 0, rem = 0, count = 0, sum = 0;
cout << "Enter a number: "; cout << "Enter a number: ";
cin >> n; cin >> n;
k = n;
while (k != 0) { temp = n;
d = k % 10;
s += d * d * d; /* First Count the number of digits
k /= 10; in the given number */
while(temp != 0) {
temp /= 10;
count++;
} }
if (s == n)
/* Calaculation for checking of armstrongs number i.e.
in a n digit number sum of the digits raised to a power of n
is equal to the original number */
temp = n;
while(temp!=0) {
rem = temp%10;
sum += (int) pow(rem,count);
temp/=10;
}
if (sum == n) {
cout << n << " is an armstrong number"; cout << n << " is an armstrong number";
else }
else {
cout << n << " is not an armstrong number"; cout << n << " is not an armstrong number";
} }
return 0;
}

View File

@ -0,0 +1,236 @@
/**
* @file
* @brief [Geometric Distribution](https://en.wikipedia.org/wiki/Geometric_distribution)
*
* @details
* The geometric distribution models the experiment of doing Bernoulli trials until a
* sucess was observed. There are two formulations of the geometric distribution:
* 1) The probability distribution of the number X of Bernoulli trials needed to get one success, supported on the set { 1, 2, 3, ... }
* 2) The probability distribution of the number Y = X 1 of failures before the first success, supported on the set { 0, 1, 2, 3, ... }
* Here, the first one is implemented.
*
* Common variables used:
* p - The success probability
* k - The number of tries
*
* @author [Domenic Zingsheim](https://github.com/DerAndereDomenic)
*/
#include <cassert> /// for assert
#include <cmath> /// for math functions
#include <cstdint> /// for fixed size data types
#include <ctime> /// for time to initialize rng
#include <iostream> /// for std::cout
#include <limits> /// for std::numeric_limits
#include <random> /// for random numbers
#include <vector> /// for std::vector
/**
* @namespace probability
* @brief Probability algorithms
*/
namespace probability {
/**
* @namespace geometric_dist
* @brief Functions for the [Geometric Distribution](https://en.wikipedia.org/wiki/Geometric_distribution) algorithm implementation
*/
namespace geometric_dist {
/**
* @brief Returns a random number between [0,1]
* @returns A uniformly distributed random number between 0 (included) and 1 (included)
*/
float generate_uniform() {
return static_cast<float>(rand()) / static_cast<float>(RAND_MAX);
}
/**
* @brief A class to model the geometric distribution
*/
class geometric_distribution
{
private:
float p; ///< The succes probability p
public:
/**
* @brief Constructor for the geometric distribution
* @param p The success probability
*/
explicit geometric_distribution(const float& p) : p(p) {}
/**
* @brief The expected value of a geometrically distributed random variable X
* @returns E[X] = 1/p
*/
float expected_value() const {
return 1.0f/ p;
}
/**
* @brief The variance of a geometrically distributed random variable X
* @returns V[X] = (1 - p) / p^2
*/
float variance() const {
return (1.0f - p) / (p * p);
}
/**
* @brief The standard deviation of a geometrically distributed random variable X
* @returns \sigma = \sqrt{V[X]}
*/
float standard_deviation() const {
return std::sqrt(variance());
}
/**
* @brief The probability density function
* @details As we use the first definition of the geometric series (1),
* we are doing k - 1 failed trials and the k-th trial is a success.
* @param k The number of trials to observe the first success in [1,\infty)
* @returns A number between [0,1] according to p * (1-p)^{k-1}
*/
float probability_density(const uint32_t& k) const {
return std::pow((1.0f - p), static_cast<float>(k - 1)) * p;
}
/**
* @brief The cumulative distribution function
* @details The sum of all probabilities up to (and including) k trials. Basically CDF(k) = P(x <= k)
* @param k The number of trials in [1,\infty)
* @returns The probability to have success within k trials
*/
float cumulative_distribution(const uint32_t& k) const {
return 1.0f - std::pow((1.0f - p), static_cast<float>(k));
}
/**
* @brief The inverse cumulative distribution function
* @details This functions answers the question: Up to how many trials are needed to have success with a probability of cdf?
* The exact floating point value is reported.
* @param cdf The probability in [0,1]
* @returns The number of (exact) trials.
*/
float inverse_cumulative_distribution(const float& cdf) const {
return std::log(1.0f - cdf) / std::log(1.0f - p);
}
/**
* @brief Generates a (discrete) sample according to the geometrical distribution
* @returns A geometrically distributed number in [1,\infty)
*/
uint32_t draw_sample() const {
float uniform_sample = generate_uniform();
return static_cast<uint32_t>(inverse_cumulative_distribution(uniform_sample)) + 1;
}
/**
* @brief This function computes the probability to have success in a given range of tries
* @details Computes P(min_tries <= x <= max_tries).
* Can be used to calculate P(x >= min_tries) by not passing a second argument.
* Can be used to calculate P(x <= max_tries) by passing 1 as the first argument
* @param min_tries The minimum number of tries in [1,\infty) (inclusive)
* @param max_tries The maximum number of tries in [min_tries, \infty) (inclusive)
* @returns The probability of having success within a range of tries [min_tries, max_tries]
*/
float range_tries(const uint32_t& min_tries = 1, const uint32_t& max_tries = std::numeric_limits<uint32_t>::max()) const {
float cdf_lower = cumulative_distribution(min_tries - 1);
float cdf_upper = max_tries == std::numeric_limits<uint32_t>::max() ? 1.0f : cumulative_distribution(max_tries);
return cdf_upper - cdf_lower;
}
};
} // namespace geometric_dist
} // namespace probability
/**
* @brief Tests the sampling method of the geometric distribution
* @details Draws 1000000 random samples and estimates mean and variance
* These should be close to the expected value and variance of the given distribution to pass.
* @param dist The distribution to test
*/
void sample_test(const probability::geometric_dist::geometric_distribution& dist) {
uint32_t n_tries = 1000000;
std::vector<float> tries;
tries.resize(n_tries);
float mean = 0.0f;
for (uint32_t i = 0; i < n_tries; ++i) {
tries[i] = static_cast<float>(dist.draw_sample());
mean += tries[i];
}
mean /= static_cast<float>(n_tries);
float var = 0.0f;
for (uint32_t i = 0; i < n_tries; ++i) {
var += (tries[i] - mean) * (tries[i] - mean);
}
//Unbiased estimate of variance
var /= static_cast<float>(n_tries - 1);
std::cout << "This value should be near " << dist.expected_value() << ": " << mean << std::endl;
std::cout << "This value should be near " << dist.variance() << ": " << var << std::endl;
}
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
probability::geometric_dist::geometric_distribution dist(0.3);
const float threshold = 1e-3f;
std::cout << "Starting tests for p = 0.3..." << std::endl;
assert(std::abs(dist.expected_value() - 3.33333333f) < threshold);
assert(std::abs(dist.variance() - 7.77777777f) < threshold);
assert(std::abs(dist.standard_deviation() - 2.788866755) < threshold);
assert(std::abs(dist.probability_density(5) - 0.07203) < threshold);
assert(std::abs(dist.cumulative_distribution(6) - 0.882351) < threshold);
assert(std::abs(dist.inverse_cumulative_distribution(dist.cumulative_distribution(8)) - 8) < threshold);
assert(std::abs(dist.range_tries() - 1.0f) < threshold);
assert(std::abs(dist.range_tries(3) - 0.49f) < threshold);
assert(std::abs(dist.range_tries(5, 11) - 0.2203267f) < threshold);
std::cout << "All tests passed" << std::endl;
sample_test(dist);
dist = probability::geometric_dist::geometric_distribution(0.5f);
std::cout << "Starting tests for p = 0.5..." << std::endl;
assert(std::abs(dist.expected_value() - 2.0f) < threshold);
assert(std::abs(dist.variance() - 2.0f) < threshold);
assert(std::abs(dist.standard_deviation() - 1.4142135f) < threshold);
assert(std::abs(dist.probability_density(5) - 0.03125) < threshold);
assert(std::abs(dist.cumulative_distribution(6) - 0.984375) < threshold);
assert(std::abs(dist.inverse_cumulative_distribution(dist.cumulative_distribution(8)) - 8) < threshold);
assert(std::abs(dist.range_tries() - 1.0f) < threshold);
assert(std::abs(dist.range_tries(3) - 0.25f) < threshold);
assert(std::abs(dist.range_tries(5, 11) - 0.062011f) < threshold);
std::cout << "All tests passed" << std::endl;
sample_test(dist);
dist = probability::geometric_dist::geometric_distribution(0.8f);
std::cout << "Starting tests for p = 0.8..." << std::endl;
assert(std::abs(dist.expected_value() - 1.25f) < threshold);
assert(std::abs(dist.variance() - 0.3125f) < threshold);
assert(std::abs(dist.standard_deviation() - 0.559016f) < threshold);
assert(std::abs(dist.probability_density(5) - 0.00128) < threshold);
assert(std::abs(dist.cumulative_distribution(6) - 0.999936) < threshold);
assert(std::abs(dist.inverse_cumulative_distribution(dist.cumulative_distribution(8)) - 8) < threshold);
assert(std::abs(dist.range_tries() - 1.0f) < threshold);
assert(std::abs(dist.range_tries(3) - 0.04f) < threshold);
assert(std::abs(dist.range_tries(5, 11) - 0.00159997f) < threshold);
std::cout << "All tests have successfully passed!" << std::endl;
sample_test(dist);
}
/**
* @brief Main function
* @return 0 on exit
*/
int main() {
srand(time(nullptr));
test(); // run self-test implementations
return 0;
}