mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
Merge branch 'master' into modify_text_search
This commit is contained in:
commit
6a8f3a4e6a
@ -266,6 +266,7 @@
|
||||
* [Addition Rule](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/addition_rule.cpp)
|
||||
* [Bayes Theorem](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/bayes_theorem.cpp)
|
||||
* [Binomial Dist](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/binomial_dist.cpp)
|
||||
* [Geometric Dist](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/geometric_dist.cpp)
|
||||
* [Poisson Dist](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/poisson_dist.cpp)
|
||||
* [Windowed Median](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/probability/windowed_median.cpp)
|
||||
|
||||
|
@ -36,19 +36,23 @@ void show() {
|
||||
int main() {
|
||||
int ch, x;
|
||||
do {
|
||||
std::cout << "\n0. Exit or Ctrl+C";
|
||||
std::cout << "\n1. Push";
|
||||
std::cout << "\n2. Pop";
|
||||
std::cout << "\n3. Print";
|
||||
std::cout << "\nEnter Your Choice : ";
|
||||
std::cout << "\nEnter Your Choice: ";
|
||||
std::cin >> ch;
|
||||
if (ch == 1) {
|
||||
std::cout << "\nInsert : ";
|
||||
switch(ch){
|
||||
case 0: break;
|
||||
case 1: std::cout << "\nInsert : ";
|
||||
std::cin >> x;
|
||||
push(x);
|
||||
} else if (ch == 2) {
|
||||
pop();
|
||||
} else if (ch == 3) {
|
||||
show();
|
||||
break;
|
||||
case 2: pop();
|
||||
break;
|
||||
case 3: show();
|
||||
break;
|
||||
default: std::cout << "Invalid option!\n"; break;
|
||||
}
|
||||
} while (ch != 0);
|
||||
|
||||
|
@ -1,21 +1,41 @@
|
||||
// Program to check whether a number is an armstrong number or not
|
||||
#include <iostream>
|
||||
|
||||
#include <cmath>
|
||||
using std::cin;
|
||||
using std::cout;
|
||||
|
||||
int main() {
|
||||
int n, k, d, s = 0;
|
||||
cout << "Enter a number:";
|
||||
int n = 0, temp = 0, rem = 0, count = 0, sum = 0;
|
||||
cout << "Enter a number: ";
|
||||
cin >> n;
|
||||
k = n;
|
||||
while (k != 0) {
|
||||
d = k % 10;
|
||||
s += d * d * d;
|
||||
k /= 10;
|
||||
|
||||
temp = n;
|
||||
|
||||
/* First Count the number of digits
|
||||
in the given number */
|
||||
while(temp != 0) {
|
||||
temp /= 10;
|
||||
count++;
|
||||
}
|
||||
if (s == n)
|
||||
cout << n << "is an armstrong number";
|
||||
else
|
||||
cout << n << "is not an armstrong number";
|
||||
|
||||
/* Calaculation for checking of armstrongs number i.e.
|
||||
in a n digit number sum of the digits raised to a power of n
|
||||
is equal to the original number */
|
||||
|
||||
temp = n;
|
||||
while(temp!=0) {
|
||||
rem = temp%10;
|
||||
sum += (int) pow(rem,count);
|
||||
temp/=10;
|
||||
}
|
||||
|
||||
|
||||
if (sum == n) {
|
||||
cout << n << " is an armstrong number";
|
||||
}
|
||||
else {
|
||||
cout << n << " is not an armstrong number";
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
236
probability/geometric_dist.cpp
Normal file
236
probability/geometric_dist.cpp
Normal file
@ -0,0 +1,236 @@
|
||||
/**
|
||||
* @file
|
||||
* @brief [Geometric Distribution](https://en.wikipedia.org/wiki/Geometric_distribution)
|
||||
*
|
||||
* @details
|
||||
* The geometric distribution models the experiment of doing Bernoulli trials until a
|
||||
* sucess was observed. There are two formulations of the geometric distribution:
|
||||
* 1) The probability distribution of the number X of Bernoulli trials needed to get one success, supported on the set { 1, 2, 3, ... }
|
||||
* 2) The probability distribution of the number Y = X − 1 of failures before the first success, supported on the set { 0, 1, 2, 3, ... }
|
||||
* Here, the first one is implemented.
|
||||
*
|
||||
* Common variables used:
|
||||
* p - The success probability
|
||||
* k - The number of tries
|
||||
*
|
||||
* @author [Domenic Zingsheim](https://github.com/DerAndereDomenic)
|
||||
*/
|
||||
|
||||
#include <cassert> /// for assert
|
||||
#include <cmath> /// for math functions
|
||||
#include <cstdint> /// for fixed size data types
|
||||
#include <ctime> /// for time to initialize rng
|
||||
#include <iostream> /// for std::cout
|
||||
#include <limits> /// for std::numeric_limits
|
||||
#include <random> /// for random numbers
|
||||
#include <vector> /// for std::vector
|
||||
|
||||
/**
|
||||
* @namespace probability
|
||||
* @brief Probability algorithms
|
||||
*/
|
||||
namespace probability {
|
||||
/**
|
||||
* @namespace geometric_dist
|
||||
* @brief Functions for the [Geometric Distribution](https://en.wikipedia.org/wiki/Geometric_distribution) algorithm implementation
|
||||
*/
|
||||
namespace geometric_dist {
|
||||
/**
|
||||
* @brief Returns a random number between [0,1]
|
||||
* @returns A uniformly distributed random number between 0 (included) and 1 (included)
|
||||
*/
|
||||
float generate_uniform() {
|
||||
return static_cast<float>(rand()) / static_cast<float>(RAND_MAX);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief A class to model the geometric distribution
|
||||
*/
|
||||
class geometric_distribution
|
||||
{
|
||||
private:
|
||||
float p; ///< The succes probability p
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Constructor for the geometric distribution
|
||||
* @param p The success probability
|
||||
*/
|
||||
explicit geometric_distribution(const float& p) : p(p) {}
|
||||
|
||||
/**
|
||||
* @brief The expected value of a geometrically distributed random variable X
|
||||
* @returns E[X] = 1/p
|
||||
*/
|
||||
float expected_value() const {
|
||||
return 1.0f/ p;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief The variance of a geometrically distributed random variable X
|
||||
* @returns V[X] = (1 - p) / p^2
|
||||
*/
|
||||
float variance() const {
|
||||
return (1.0f - p) / (p * p);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief The standard deviation of a geometrically distributed random variable X
|
||||
* @returns \sigma = \sqrt{V[X]}
|
||||
*/
|
||||
float standard_deviation() const {
|
||||
return std::sqrt(variance());
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief The probability density function
|
||||
* @details As we use the first definition of the geometric series (1),
|
||||
* we are doing k - 1 failed trials and the k-th trial is a success.
|
||||
* @param k The number of trials to observe the first success in [1,\infty)
|
||||
* @returns A number between [0,1] according to p * (1-p)^{k-1}
|
||||
*/
|
||||
float probability_density(const uint32_t& k) const {
|
||||
return std::pow((1.0f - p), static_cast<float>(k - 1)) * p;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief The cumulative distribution function
|
||||
* @details The sum of all probabilities up to (and including) k trials. Basically CDF(k) = P(x <= k)
|
||||
* @param k The number of trials in [1,\infty)
|
||||
* @returns The probability to have success within k trials
|
||||
*/
|
||||
float cumulative_distribution(const uint32_t& k) const {
|
||||
return 1.0f - std::pow((1.0f - p), static_cast<float>(k));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief The inverse cumulative distribution function
|
||||
* @details This functions answers the question: Up to how many trials are needed to have success with a probability of cdf?
|
||||
* The exact floating point value is reported.
|
||||
* @param cdf The probability in [0,1]
|
||||
* @returns The number of (exact) trials.
|
||||
*/
|
||||
float inverse_cumulative_distribution(const float& cdf) const {
|
||||
return std::log(1.0f - cdf) / std::log(1.0f - p);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Generates a (discrete) sample according to the geometrical distribution
|
||||
* @returns A geometrically distributed number in [1,\infty)
|
||||
*/
|
||||
uint32_t draw_sample() const {
|
||||
float uniform_sample = generate_uniform();
|
||||
return static_cast<uint32_t>(inverse_cumulative_distribution(uniform_sample)) + 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This function computes the probability to have success in a given range of tries
|
||||
* @details Computes P(min_tries <= x <= max_tries).
|
||||
* Can be used to calculate P(x >= min_tries) by not passing a second argument.
|
||||
* Can be used to calculate P(x <= max_tries) by passing 1 as the first argument
|
||||
* @param min_tries The minimum number of tries in [1,\infty) (inclusive)
|
||||
* @param max_tries The maximum number of tries in [min_tries, \infty) (inclusive)
|
||||
* @returns The probability of having success within a range of tries [min_tries, max_tries]
|
||||
*/
|
||||
float range_tries(const uint32_t& min_tries = 1, const uint32_t& max_tries = std::numeric_limits<uint32_t>::max()) const {
|
||||
float cdf_lower = cumulative_distribution(min_tries - 1);
|
||||
float cdf_upper = max_tries == std::numeric_limits<uint32_t>::max() ? 1.0f : cumulative_distribution(max_tries);
|
||||
return cdf_upper - cdf_lower;
|
||||
}
|
||||
};
|
||||
} // namespace geometric_dist
|
||||
} // namespace probability
|
||||
|
||||
/**
|
||||
* @brief Tests the sampling method of the geometric distribution
|
||||
* @details Draws 1000000 random samples and estimates mean and variance
|
||||
* These should be close to the expected value and variance of the given distribution to pass.
|
||||
* @param dist The distribution to test
|
||||
*/
|
||||
void sample_test(const probability::geometric_dist::geometric_distribution& dist) {
|
||||
uint32_t n_tries = 1000000;
|
||||
std::vector<float> tries;
|
||||
tries.resize(n_tries);
|
||||
|
||||
float mean = 0.0f;
|
||||
for (uint32_t i = 0; i < n_tries; ++i) {
|
||||
tries[i] = static_cast<float>(dist.draw_sample());
|
||||
mean += tries[i];
|
||||
}
|
||||
|
||||
mean /= static_cast<float>(n_tries);
|
||||
|
||||
float var = 0.0f;
|
||||
for (uint32_t i = 0; i < n_tries; ++i) {
|
||||
var += (tries[i] - mean) * (tries[i] - mean);
|
||||
}
|
||||
|
||||
//Unbiased estimate of variance
|
||||
var /= static_cast<float>(n_tries - 1);
|
||||
|
||||
std::cout << "This value should be near " << dist.expected_value() << ": " << mean << std::endl;
|
||||
std::cout << "This value should be near " << dist.variance() << ": " << var << std::endl;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Self-test implementations
|
||||
* @returns void
|
||||
*/
|
||||
static void test() {
|
||||
probability::geometric_dist::geometric_distribution dist(0.3);
|
||||
|
||||
const float threshold = 1e-3f;
|
||||
|
||||
std::cout << "Starting tests for p = 0.3..." << std::endl;
|
||||
assert(std::abs(dist.expected_value() - 3.33333333f) < threshold);
|
||||
assert(std::abs(dist.variance() - 7.77777777f) < threshold);
|
||||
assert(std::abs(dist.standard_deviation() - 2.788866755) < threshold);
|
||||
assert(std::abs(dist.probability_density(5) - 0.07203) < threshold);
|
||||
assert(std::abs(dist.cumulative_distribution(6) - 0.882351) < threshold);
|
||||
assert(std::abs(dist.inverse_cumulative_distribution(dist.cumulative_distribution(8)) - 8) < threshold);
|
||||
assert(std::abs(dist.range_tries() - 1.0f) < threshold);
|
||||
assert(std::abs(dist.range_tries(3) - 0.49f) < threshold);
|
||||
assert(std::abs(dist.range_tries(5, 11) - 0.2203267f) < threshold);
|
||||
std::cout << "All tests passed" << std::endl;
|
||||
sample_test(dist);
|
||||
|
||||
dist = probability::geometric_dist::geometric_distribution(0.5f);
|
||||
|
||||
std::cout << "Starting tests for p = 0.5..." << std::endl;
|
||||
assert(std::abs(dist.expected_value() - 2.0f) < threshold);
|
||||
assert(std::abs(dist.variance() - 2.0f) < threshold);
|
||||
assert(std::abs(dist.standard_deviation() - 1.4142135f) < threshold);
|
||||
assert(std::abs(dist.probability_density(5) - 0.03125) < threshold);
|
||||
assert(std::abs(dist.cumulative_distribution(6) - 0.984375) < threshold);
|
||||
assert(std::abs(dist.inverse_cumulative_distribution(dist.cumulative_distribution(8)) - 8) < threshold);
|
||||
assert(std::abs(dist.range_tries() - 1.0f) < threshold);
|
||||
assert(std::abs(dist.range_tries(3) - 0.25f) < threshold);
|
||||
assert(std::abs(dist.range_tries(5, 11) - 0.062011f) < threshold);
|
||||
std::cout << "All tests passed" << std::endl;
|
||||
sample_test(dist);
|
||||
|
||||
dist = probability::geometric_dist::geometric_distribution(0.8f);
|
||||
|
||||
std::cout << "Starting tests for p = 0.8..." << std::endl;
|
||||
assert(std::abs(dist.expected_value() - 1.25f) < threshold);
|
||||
assert(std::abs(dist.variance() - 0.3125f) < threshold);
|
||||
assert(std::abs(dist.standard_deviation() - 0.559016f) < threshold);
|
||||
assert(std::abs(dist.probability_density(5) - 0.00128) < threshold);
|
||||
assert(std::abs(dist.cumulative_distribution(6) - 0.999936) < threshold);
|
||||
assert(std::abs(dist.inverse_cumulative_distribution(dist.cumulative_distribution(8)) - 8) < threshold);
|
||||
assert(std::abs(dist.range_tries() - 1.0f) < threshold);
|
||||
assert(std::abs(dist.range_tries(3) - 0.04f) < threshold);
|
||||
assert(std::abs(dist.range_tries(5, 11) - 0.00159997f) < threshold);
|
||||
std::cout << "All tests have successfully passed!" << std::endl;
|
||||
sample_test(dist);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
* @return 0 on exit
|
||||
*/
|
||||
int main() {
|
||||
srand(time(nullptr));
|
||||
test(); // run self-test implementations
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user