Merge pull request #635 from Anirban166/patch-3

feat: add Kosaraju's algorithm to find all the strongly connected components in a graph.
This commit is contained in:
Bhaumik Mistry 2019-11-22 17:10:04 -05:00 committed by GitHub
commit 6d3a851766
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

134
Graph/kosaraju.cpp Normal file
View File

@ -0,0 +1,134 @@
/* Implementation of Kosaraju's Algorithm to find out the strongly connected components (SCCs) in a graph.
Author:Anirban166
*/
#include<iostream>
#include<vector>
using namespace std;
/**
* Iterative function/method to print graph:
* @param a[] : array of vectors (2D)
* @param V : vertices
* @return void
**/
void print(vector<int> a[],int V)
{
for(int i=0;i<V;i++)
{
if(!a[i].empty())
cout<<"i="<<i<<"-->";
for(int j=0;j<a[i].size();j++)
cout<<a[i][j]<<" ";
if(!a[i].empty())
cout<<endl;
}
}
/**
* //Recursive function/method to push vertices into stack passed as parameter:
* @param v : vertices
* @param &st : stack passed by reference
* @param vis[] : array to keep track of visited nodes (boolean type)
* @param adj[] : array of vectors to represent graph
* @return void
**/
void push_vertex(int v,stack<int> &st,bool vis[],vector<int> adj[])
{
vis[v]=true;
for(auto i=adj[v].begin();i!=adj[v].end();i++)
{
if(vis[*i]==false)
push_vertex(*i,st,vis,adj);
}
st.push(v);
}
/**
* //Recursive function/method to implement depth first traversal(dfs):
* @param v : vertices
* @param vis[] : array to keep track of visited nodes (boolean type)
* @param grev[] : graph with reversed edges
* @return void
**/
void dfs(int v,bool vis[],vector<int> grev[])
{
vis[v]=true;
// cout<<v<<" ";
for(auto i=grev[v].begin();i!=grev[v].end();i++)
{
if(vis[*i]==false)
dfs(*i,vis,grev);
}
}
//function/method to implement Kosaraju's Algorithm:
/**
* Info about the method
* @param V : vertices in graph
* @param adj[] : array of vectors that represent a graph (adjacency list/array)
* @return int ( 0, 1, 2..and so on, only unsigned values as either there can be no SCCs i.e. none(0) or there will be x no. of SCCs (x>0))
i.e. it returns the count of (number of) strongly connected components (SCCs) in the graph. (variable 'count_scc' within function)
**/
int kosaraju(int V, vector<int> adj[])
{
bool vis[V]={};
stack<int> st;
for(int v=0;v<V;v++)
{
if(vis[v]==false)
push_vertex(v,st,vis,adj);
}
//making new graph (grev) with reverse edges as in adj[]:
vector<int> grev[V];
for(int i=0;i<V+1;i++)
{
for(auto j=adj[i].begin();j!=adj[i].end();j++)
{
grev[*j].push_back(i);
}
}
// cout<<"grev="<<endl; ->debug statement
// print(grev,V); ->debug statement
//reinitialise visited to 0
for(int i=0;i<V;i++)
vis[i]=false;
int count_scc=0;
while(!st.empty())
{
int t=st.top();
st.pop();
if(vis[t]==false)
{
dfs(t,vis,grev);
count_scc++;
}
}
// cout<<"count_scc="<<count_scc<<endl; //in case you want to print here itself, uncomment & change return type of function to void.
return count_scc;
}
//All critical/corner cases have been taken care of.
//Input your required values: (not hardcoded)
int main()
{
int t;
cin>>t;
while(t--)
{
int a,b ; //a->number of nodes, b->directed edges.
cin>>a>>b;
int m,n;
vector<int> adj[a+1];
for(int i=0;i<b;i++) //take total b inputs of 2 vertices each required to form an edge.
{
cin>>m>>n; //take input m,n denoting edge from m->n.
adj[m].push_back(n);
}
//pass number of nodes and adjacency array as parameters to function:
cout<<kosaraju(a, adj)<<endl;
}
return 0;
}