mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
Merge pull request #635 from Anirban166/patch-3
feat: add Kosaraju's algorithm to find all the strongly connected components in a graph.
This commit is contained in:
commit
6d3a851766
134
Graph/kosaraju.cpp
Normal file
134
Graph/kosaraju.cpp
Normal file
@ -0,0 +1,134 @@
|
||||
/* Implementation of Kosaraju's Algorithm to find out the strongly connected components (SCCs) in a graph.
|
||||
Author:Anirban166
|
||||
*/
|
||||
|
||||
#include<iostream>
|
||||
#include<vector>
|
||||
|
||||
using namespace std;
|
||||
|
||||
/**
|
||||
* Iterative function/method to print graph:
|
||||
* @param a[] : array of vectors (2D)
|
||||
* @param V : vertices
|
||||
* @return void
|
||||
**/
|
||||
void print(vector<int> a[],int V)
|
||||
{
|
||||
for(int i=0;i<V;i++)
|
||||
{
|
||||
if(!a[i].empty())
|
||||
cout<<"i="<<i<<"-->";
|
||||
for(int j=0;j<a[i].size();j++)
|
||||
cout<<a[i][j]<<" ";
|
||||
if(!a[i].empty())
|
||||
cout<<endl;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* //Recursive function/method to push vertices into stack passed as parameter:
|
||||
* @param v : vertices
|
||||
* @param &st : stack passed by reference
|
||||
* @param vis[] : array to keep track of visited nodes (boolean type)
|
||||
* @param adj[] : array of vectors to represent graph
|
||||
* @return void
|
||||
**/
|
||||
void push_vertex(int v,stack<int> &st,bool vis[],vector<int> adj[])
|
||||
{
|
||||
vis[v]=true;
|
||||
for(auto i=adj[v].begin();i!=adj[v].end();i++)
|
||||
{
|
||||
if(vis[*i]==false)
|
||||
push_vertex(*i,st,vis,adj);
|
||||
}
|
||||
st.push(v);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* //Recursive function/method to implement depth first traversal(dfs):
|
||||
* @param v : vertices
|
||||
* @param vis[] : array to keep track of visited nodes (boolean type)
|
||||
* @param grev[] : graph with reversed edges
|
||||
* @return void
|
||||
**/
|
||||
void dfs(int v,bool vis[],vector<int> grev[])
|
||||
{
|
||||
vis[v]=true;
|
||||
// cout<<v<<" ";
|
||||
for(auto i=grev[v].begin();i!=grev[v].end();i++)
|
||||
{
|
||||
if(vis[*i]==false)
|
||||
dfs(*i,vis,grev);
|
||||
}
|
||||
}
|
||||
|
||||
//function/method to implement Kosaraju's Algorithm:
|
||||
/**
|
||||
* Info about the method
|
||||
* @param V : vertices in graph
|
||||
* @param adj[] : array of vectors that represent a graph (adjacency list/array)
|
||||
* @return int ( 0, 1, 2..and so on, only unsigned values as either there can be no SCCs i.e. none(0) or there will be x no. of SCCs (x>0))
|
||||
i.e. it returns the count of (number of) strongly connected components (SCCs) in the graph. (variable 'count_scc' within function)
|
||||
**/
|
||||
int kosaraju(int V, vector<int> adj[])
|
||||
{
|
||||
bool vis[V]={};
|
||||
stack<int> st;
|
||||
for(int v=0;v<V;v++)
|
||||
{
|
||||
if(vis[v]==false)
|
||||
push_vertex(v,st,vis,adj);
|
||||
}
|
||||
//making new graph (grev) with reverse edges as in adj[]:
|
||||
vector<int> grev[V];
|
||||
for(int i=0;i<V+1;i++)
|
||||
{
|
||||
for(auto j=adj[i].begin();j!=adj[i].end();j++)
|
||||
{
|
||||
grev[*j].push_back(i);
|
||||
}
|
||||
}
|
||||
// cout<<"grev="<<endl; ->debug statement
|
||||
// print(grev,V); ->debug statement
|
||||
//reinitialise visited to 0
|
||||
for(int i=0;i<V;i++)
|
||||
vis[i]=false;
|
||||
int count_scc=0;
|
||||
while(!st.empty())
|
||||
{
|
||||
int t=st.top();
|
||||
st.pop();
|
||||
if(vis[t]==false)
|
||||
{
|
||||
dfs(t,vis,grev);
|
||||
count_scc++;
|
||||
}
|
||||
}
|
||||
// cout<<"count_scc="<<count_scc<<endl; //in case you want to print here itself, uncomment & change return type of function to void.
|
||||
return count_scc;
|
||||
}
|
||||
|
||||
//All critical/corner cases have been taken care of.
|
||||
//Input your required values: (not hardcoded)
|
||||
int main()
|
||||
{
|
||||
int t;
|
||||
cin>>t;
|
||||
while(t--)
|
||||
{
|
||||
int a,b ; //a->number of nodes, b->directed edges.
|
||||
cin>>a>>b;
|
||||
int m,n;
|
||||
vector<int> adj[a+1];
|
||||
for(int i=0;i<b;i++) //take total b inputs of 2 vertices each required to form an edge.
|
||||
{
|
||||
cin>>m>>n; //take input m,n denoting edge from m->n.
|
||||
adj[m].push_back(n);
|
||||
}
|
||||
//pass number of nodes and adjacency array as parameters to function:
|
||||
cout<<kosaraju(a, adj)<<endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user