clang-format and clang-tidy fixes for 4d357c46

This commit is contained in:
github-actions 2021-11-05 18:11:55 +00:00
parent 4d357c468f
commit 78a2c9b705
3 changed files with 48 additions and 43 deletions

View File

@ -43,6 +43,8 @@
#include <iostream> /// for IO operations #include <iostream> /// for IO operations
#include <map> /// for std::map container #include <map> /// for std::map container
#include "math.h"
/** /**
* @namespace numerical_methods * @namespace numerical_methods
* @brief Numerical algorithms/methods * @brief Numerical algorithms/methods
@ -64,13 +66,13 @@ namespace simpson_method {
* @returns the result of the integration * @returns the result of the integration
*/ */
double evaluate_by_simpson(std::int32_t N, double h, double a, double evaluate_by_simpson(std::int32_t N, double h, double a,
std::function<double(double)> func) { const std::function<double(double)>& func) {
std::map<std::int32_t, double> std::map<std::int32_t, double>
data_table; // Contains the data points. key: i, value: f(xi) data_table; // Contains the data points. key: i, value: f(xi)
double xi = a; // Initialize xi to the starting point x0 = a double xi = a; // Initialize xi to the starting point x0 = a
// Create the data table // Create the data table
double temp; double temp = NAN;
for (std::int32_t i = 0; i <= N; i++) { for (std::int32_t i = 0; i <= N; i++) {
temp = func(xi); temp = func(xi);
data_table.insert( data_table.insert(
@ -82,13 +84,14 @@ double evaluate_by_simpson(std::int32_t N, double h, double a,
// Remember: f(x0) + 4*f(x1) + 2*f(x2) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN) // Remember: f(x0) + 4*f(x1) + 2*f(x2) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)
double evaluate_integral = 0; double evaluate_integral = 0;
for (std::int32_t i = 0; i <= N; i++) { for (std::int32_t i = 0; i <= N; i++) {
if (i == 0 || i == N) if (i == 0 || i == N) {
evaluate_integral += data_table.at(i); evaluate_integral += data_table.at(i);
else if (i % 2 == 1) } else if (i % 2 == 1) {
evaluate_integral += 4 * data_table.at(i); evaluate_integral += 4 * data_table.at(i);
else } else {
evaluate_integral += 2 * data_table.at(i); evaluate_integral += 2 * data_table.at(i);
} }
}
// Multiply by the coefficient h/3 // Multiply by the coefficient h/3
evaluate_integral *= h / 3; evaluate_integral *= h / 3;
@ -170,7 +173,7 @@ int main(int argc, char** argv) {
/// interval. MUST BE EVEN /// interval. MUST BE EVEN
double a = 1, b = 3; /// Starting and ending point of the integration in double a = 1, b = 3; /// Starting and ending point of the integration in
/// the real axis /// the real axis
double h; /// Step, calculated by a, b and N double h = NAN; /// Step, calculated by a, b and N
bool used_argv_parameters = bool used_argv_parameters =
false; // If argv parameters are used then the assert must be omitted false; // If argv parameters are used then the assert must be omitted
@ -180,18 +183,20 @@ int main(int argc, char** argv) {
// displaying messages) // displaying messages)
if (argc == 4) { if (argc == 4) {
N = std::atoi(argv[1]); N = std::atoi(argv[1]);
a = (double)std::atof(argv[2]); a = std::atof(argv[2]);
b = (double)std::atof(argv[3]); b = std::atof(argv[3]);
// Check if a<b else abort // Check if a<b else abort
assert(a < b && "a has to be less than b"); assert(a < b && "a has to be less than b");
assert(N > 0 && "N has to be > 0"); assert(N > 0 && "N has to be > 0");
if (N < 16 || a != 1 || b != 3) if (N < 16 || a != 1 || b != 3) {
used_argv_parameters = true; used_argv_parameters = true;
}
std::cout << "You selected N=" << N << ", a=" << a << ", b=" << b std::cout << "You selected N=" << N << ", a=" << a << ", b=" << b
<< std::endl; << std::endl;
} else } else {
std::cout << "Default N=" << N << ", a=" << a << ", b=" << b std::cout << "Default N=" << N << ", a=" << a << ", b=" << b
<< std::endl; << std::endl;
}
// Find the step // Find the step
h = (b - a) / N; h = (b - a) / N;

View File

@ -6,7 +6,8 @@
* discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). * discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT).
* @details * @details
* This * This
* algorithm has application in use case scenario where a user wants to find points of a * algorithm has application in use case scenario where a user wants to find
points of a
* function * function
* in a short time by just using the coefficients of the polynomial * in a short time by just using the coefficients of the polynomial
* function. * function.
@ -56,9 +57,10 @@ std::complex<double> *FastFourierTransform(std::complex<double> *p, uint8_t n) {
if (j % 2 == 0) { if (j % 2 == 0) {
pe[k1++] = p[j]; /// Assigning values of even Coefficients pe[k1++] = p[j]; /// Assigning values of even Coefficients
} else } else {
po[k2++] = p[j]; /// Assigning value of odd Coefficients po[k2++] = p[j]; /// Assigning value of odd Coefficients
} }
}
std::complex<double> *ye = std::complex<double> *ye =
FastFourierTransform(pe, n / 2); /// Recursive Call FastFourierTransform(pe, n / 2); /// Recursive Call
@ -80,11 +82,9 @@ std::complex<double> *FastFourierTransform(std::complex<double> *p, uint8_t n) {
k2++; k2++;
} }
if(n!=2){ if (n != 2) {
delete[] pe; delete[] pe;
delete[] po; delete[] po;
} }
delete[] ye; /// Deleting dynamic array ye delete[] ye; /// Deleting dynamic array ye
@ -123,9 +123,11 @@ static void test() {
{10, 0}, {-2, -2}, {-2, 0}, {-2, 2}}; /// True Answer for test case 2 {10, 0}, {-2, -2}, {-2, 0}, {-2, 2}}; /// True Answer for test case 2
std::complex<double> *o1 = numerical_methods::FastFourierTransform(t1, n1); std::complex<double> *o1 = numerical_methods::FastFourierTransform(t1, n1);
std::complex<double> *t3=o1; /// Temporary variable used to delete memory location of o1 std::complex<double> *t3 =
o1; /// Temporary variable used to delete memory location of o1
std::complex<double> *o2 = numerical_methods::FastFourierTransform(t2, n2); std::complex<double> *o2 = numerical_methods::FastFourierTransform(t2, n2);
std::complex<double> *t4=o2; /// Temporary variable used to delete memory location of o2 std::complex<double> *t4 =
o2; /// Temporary variable used to delete memory location of o2
for (uint8_t i = 0; i < n1; i++) { for (uint8_t i = 0; i < n1; i++) {
assert((r1[i].real() - o1->real() < 0.000000000001) && assert((r1[i].real() - o1->real() < 0.000000000001) &&
(r1[i].imag() - o1->imag() < (r1[i].imag() - o1->imag() <
@ -142,7 +144,6 @@ static void test() {
o2++; o2++;
} }
delete[] t1; delete[] t1;
delete[] t2; delete[] t2;
delete[] t3; delete[] t3;

View File

@ -4,10 +4,10 @@
* (IFFT)](https://www.geeksforgeeks.org/python-inverse-fast-fourier-transformation/) * (IFFT)](https://www.geeksforgeeks.org/python-inverse-fast-fourier-transformation/)
* is an algorithm that computes the inverse fourier transform. * is an algorithm that computes the inverse fourier transform.
* @details * @details
* This algorithm has an application in use case scenario where a user wants find coefficients of * This algorithm has an application in use case scenario where a user wants
* a function in a short time by just using points generated by DFT. * find coefficients of a function in a short time by just using points
* Time complexity * generated by DFT. Time complexity this algorithm computes the IDFT in
* this algorithm computes the IDFT in O(nlogn) time in comparison to traditional O(n^2). * O(nlogn) time in comparison to traditional O(n^2).
* @author [Ameya Chawla](https://github.com/ameyachawlaggsipu) * @author [Ameya Chawla](https://github.com/ameyachawlaggsipu)
*/ */
@ -23,14 +23,15 @@
*/ */
namespace numerical_methods { namespace numerical_methods {
/** /**
* @brief InverseFastFourierTransform is a recursive function which returns list of * @brief InverseFastFourierTransform is a recursive function which returns list
* complex numbers * of complex numbers
* @param p List of Coefficents in form of complex numbers * @param p List of Coefficents in form of complex numbers
* @param n Count of elements in list p * @param n Count of elements in list p
* @returns p if n==1 * @returns p if n==1
* @returns y if n!=1 * @returns y if n!=1
*/ */
std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8_t n) { std::complex<double> *InverseFastFourierTransform(std::complex<double> *p,
uint8_t n) {
if (n == 1) { if (n == 1) {
return p; /// Base Case To return return p; /// Base Case To return
} }
@ -40,8 +41,8 @@ std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8
std::complex<double> om = std::complex<double>( std::complex<double> om = std::complex<double>(
cos(2 * pi / n), sin(2 * pi / n)); /// Calculating value of omega cos(2 * pi / n), sin(2 * pi / n)); /// Calculating value of omega
om.real(om.real()/n); /// One change in comparison with DFT om.real(om.real() / n); /// One change in comparison with DFT
om.imag(om.imag()/n); /// One change in comparison with DFT om.imag(om.imag() / n); /// One change in comparison with DFT
auto *pe = new std::complex<double>[n / 2]; /// Coefficients of even power auto *pe = new std::complex<double>[n / 2]; /// Coefficients of even power
@ -52,9 +53,10 @@ std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8
if (j % 2 == 0) { if (j % 2 == 0) {
pe[k1++] = p[j]; /// Assigning values of even Coefficients pe[k1++] = p[j]; /// Assigning values of even Coefficients
} else } else {
po[k2++] = p[j]; /// Assigning value of odd Coefficients po[k2++] = p[j]; /// Assigning value of odd Coefficients
} }
}
std::complex<double> *ye = std::complex<double> *ye =
InverseFastFourierTransform(pe, n / 2); /// Recursive Call InverseFastFourierTransform(pe, n / 2); /// Recursive Call
@ -76,11 +78,9 @@ std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8
k2++; k2++;
} }
if(n!=2){ if (n != 2) {
delete[] pe; delete[] pe;
delete[] po; delete[] po;
} }
delete[] ye; /// Deleting dynamic array ye delete[] ye; /// Deleting dynamic array ye
@ -118,16 +118,17 @@ static void test() {
std::vector<std::complex<double>> r2 = { std::vector<std::complex<double>> r2 = {
{1, 0}, {2, 0}, {3, 0}, {4, 0}}; /// True Answer for test case 2 {1, 0}, {2, 0}, {3, 0}, {4, 0}}; /// True Answer for test case 2
std::complex<double> *o1 = numerical_methods::InverseFastFourierTransform(t1, n1); std::complex<double> *o1 =
numerical_methods::InverseFastFourierTransform(t1, n1);
std::complex<double> *o2 = numerical_methods::InverseFastFourierTransform(t2, n2); std::complex<double> *o2 =
numerical_methods::InverseFastFourierTransform(t2, n2);
for (uint8_t i = 0; i < n1; i++) { for (uint8_t i = 0; i < n1; i++) {
assert((r1[i].real() - o1[i].real() < 0.000000000001) && assert((r1[i].real() - o1[i].real() < 0.000000000001) &&
(r1[i].imag() - o1[i].imag() < (r1[i].imag() - o1[i].imag() <
0.000000000001)); /// Comparing for both real and imaginary 0.000000000001)); /// Comparing for both real and imaginary
/// values for test case 1 /// values for test case 1
} }
for (uint8_t i = 0; i < n2; i++) { for (uint8_t i = 0; i < n2; i++) {
@ -135,10 +136,8 @@ static void test() {
(r2[i].imag() - o2[i].imag() < (r2[i].imag() - o2[i].imag() <
0.000000000001)); /// Comparing for both real and imaginary 0.000000000001)); /// Comparing for both real and imaginary
/// values for test case 2 /// values for test case 2
} }
delete[] t1; delete[] t1;
delete[] t2; delete[] t2;
delete[] o1; delete[] o1;