feat: Reworked interpolation_search.cpp

This commit is contained in:
Lajat5 2021-12-18 12:29:52 +05:30 committed by GitHub
parent 946cb99430
commit 79df69d582
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,61 +1,117 @@
/**
* \file
* \brief [Interpolation
* search](https://en.wikipedia.org/wiki/Interpolation_search) algorithm
*/
#include <iostream>
/** function to search the value in an array using interpolation search
* \param [in] arr array to search in
* \param [in] value value to search for
* \param [in] len length of array
* \returns index where the value is found
* \returns 0 if not found
*/
int interpolation_search(int arr[], int value, int len) {
int low = 0, high, mid;
high = len - 1;
/******************************************************************************
* @file
* @brief [interpolation search
* algorithm](https://en.wikipedia.org/wiki/interpolation_search)
*
* @details
* interpolation search resembles the method by which people search a telephone
* directory for a name (the key value by which the book's entries are ordered):
* in each step the algorithm calculates where in the remaining search space
* the sought item might be, based on the key values at the bounds of the search
* space and the value of the sought key, usually via a linear interpolation.
* The key value actually found at this estimated position is then compared to
* the key value being sought. If it is not equal, then depending on the
* comparison, the remaining search space is reduced to the part before or
* after the estimated position. This method will only work if calculations
* on the size of differences between key values are sensible.
while (arr[low] <= value && arr[high] >= value) {
mid = (low +
((value - arr[low]) * (high - low)) / (arr[high] - arr[low]));
if (arr[mid] > value)
high = mid - 1;
else if (arr[mid] < value)
low = mid + 1;
else
return mid;
}
* ### Complexities
*
* //n is the number of element in the array.
*
* Worst-case time complexity O(n) (when items are distributed exponentially)
* Average time complexity O(log2(log2 n))
* space complexity 0(1)
*
* @author [Lajat Manekar](https://github.com/Lazeeez)
* @author Unknown author
*******************************************************************************/
if (arr[low] == value)
return low;
#include <algorithm> /// for std::sort function
#include <cassert> /// for std::assert
#include <iostream> /// for IO operations
#include <vector> /// for std::vector
return -1;
/******************************************************************************
* @namespace search
* @brief Searching algorithms
*******************************************************************************/
namespace search {
/******************************************************************************
* @namespace interpolation_search
* @brief interpolation search searching algorihm
*******************************************************************************/
namespace interpolation_search {
/******************************************************************************
* @brief The main function which implements binary search
* @param arr vector to be searched in
* @param number value to be searched
* @returns integer index of `number` in vector `arr`
*******************************************************************************/
uint64_t interpolationSearch(std::vector<uint64_t> &arr, uint64_t number) {
uint64_t size = arr.size();
uint64_t low = 0, high = (size - 1);
// Since vector is sorted, an element present in array must be in range defined by corner
while (low <= high && number >= arr[low] && number <= arr[high])
{
if (low == high) {
if (arr[low] == number) {
return low;
}
return -1;
}
// Probing the position with keeping uniform distribution in mind.
uint64_t pos = low + ((static_cast<uint64_t>(high - low) /
(arr[high] - arr[low])) *
(number - arr[low]));
if (arr[pos] == number) {
return pos; // Condition of target found
}
if (arr[pos] < number) {
low = pos + 1; // If x is larger, x is in upper part
}
else {
high = pos - 1; // If x is smaller, x is in the lower part
}
}
return -1;
}
} // namespace interpolation_search
} // namespace search
/*******************************************************************************
* @brief Self-test implementation
* @returns void
*******************************************************************************/
void tests() {
// testcase
// array = [10, 12, 13, 16, 18, 19, 20, 21, 1, 2, 3, 4, 22, 23, 24, 33, 35, 42, 47] , Value = 33
// should return 15
std::vector<uint64_t> arr = {{10, 12, 13, 16, 18, 19, 20, 21, 1, 2, 3, 4, 22, 23, 24, 33, 35, 42, 47}};
sort(arr.begin(), arr.end());
uint64_t number = 33; // Element to be searched
uint64_t expected_answer = 15;
uint64_t derived_answer = search::interpolation_search::interpolationSearch(arr, number);
std::cout << "Testcase : ";
assert(derived_answer == expected_answer);
std::cout << "Passed!";
}
/** main function */
int main() {
int n, value, re;
std::cout << "Enter the size of array(less than 100) : ";
std::cin >> n;
int *array = new int[n];
std::cout << "array in ascending (increasing) order : " << std::endl;
for (int i = 0; i < n; i++) std::cin >> array[i];
std::cout << "Enter the value you want to search : ";
std::cin >> value;
re = interpolation_search(array, value, n);
if (re == -1)
std::cout << "Entered value is not in the array" << std::endl;
else
std::cout << "The value is at the position " << re << std::endl;
delete[] array;
/*******************************************************************************
* @brief Main function
* @returns 0 on exit
*******************************************************************************/
int main()
{
tests(); // Condition of target found
return 0;
}