Improved Documentation

This commit is contained in:
ggkogkou 2021-10-22 23:25:41 +03:00
parent 387218e081
commit 7b554f8080

View File

@ -1,97 +1,122 @@
#include <iostream>
#include <cmath>
#include <cassert>
#include <cstdlib>
#include <functional>
#include <map>
#include <iostream> /// for IO operations
#include <cmath> /// for math functions
#include <cassert> /// for assert
#include <cstdlib> /// for std::atof
#include <functional> /// forstd::function
#include <map> /// for std::map
/*!
* @title Calculate definite integrals with midpoint method
* @see https://en.wikipedia.org/wiki/Midpoint_method
* @brief A numerical method for easy approximation of integrals
* @details The idea is to split the interval into N of intervals and use as interpolation points the xi
* @file
* \brief A numerical method for easy approximation of integrals
* \details The idea is to split the interval into N of intervals and use as interpolation points the xi
* for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the
* first and last points of the interval of the integration [a, b].
*
* We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula:
* I = h * {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)}
*
* In this program there are 4 sample test functions f, g, k, l that are evaluated in the same interval [1, 3.
*
* Arguments can be passed as parameters from the command line argv[1] = N, argv[2] = a, argv[3] = b.
* In this case if the default values N=16, a=1, b=3 are changed then the tests/assert are disabled.
*
* In the end of the main() and if and only if N, a, b are on their default values,
* i compare the program's result with the one from mathematical software with 2 decimal points margin.
* More info: [Link to wikipedia](https://en.wikipedia.org/wiki/Midpoint_method)
*
* Add your own sample function by replacing one of the f, g, k, l and the corresponding assert
*
* @author ggkogkou
* @author [ggkogkou](https://github.com/ggkogkou)
*/
/**
* @namespace midpoint_rule
* @brief Contains the function of the midpoint method implementation
* \brief Contains the function of the midpoint method implementation
*/
namespace midpoint_rule{
/*!
* @fn double midpoint(const int N, const double h, const double a, const std::function<double (double)>& func)
* @brief Implement midpoint method
* @param N number of intervals
* @param h step
* @param a x0
* @param func The function that will be evaluated
* \brief Implement midpoint method
* @param N is the number of intervals
* @param h is the step
* @param a is x0
* @param func is the function that will be integrated
* @returns the result of the integration
*/
double midpoint(const int N, const double h, const double a, const std::function<double (double)>& func){
std::map<int, double> data_table; /// Contains the data points, key: i, value: f(xi)
double xi = a; /// Initialize xi to the starting point x0 = a
std::map<int, double> data_table; // Contains the data points, key: i, value: f(xi)
double xi = a; // Initialize xi to the starting point x0 = a
// Create the data table
/// Loop from x0 to xN-1
// Loop from x0 to xN-1
double temp;
for(int i=0; i<N; i++){
temp = func(xi + h/2); /// find f(xi+h/2)
data_table.insert(std::pair<int ,double>(i, temp)); /// add i and f(xi)
xi += h; /// Get the next point xi for the next iteration
temp = func(xi + h/2); // find f(xi+h/2)
data_table.insert(std::pair<int ,double>(i, temp)); // add i and f(xi)
xi += h; // Get the next point xi for the next iteration
}
/// Evaluate the integral.
// Evaluate the integral.
// Remember: {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)}
double evaluate_integral = 0;
for(int i=0; i<N; i++) evaluate_integral += data_table.at(i);
/// Multiply by the coefficient h
// Multiply by the coefficient h
evaluate_integral *= h;
/// If the result calculated is nan, then the user has given wrong input interval.
// If the result calculated is nan, then the user has given wrong input interval.
assert(!std::isnan(evaluate_integral) && "The definite integral can't be evaluated. Check the validity of your input.\n");
// Else return
return evaluate_integral;
}
} // midpoint_rule ends here
} // namespace midpoint_rule
/**
* @fn double f(double x)
* @brief A function f(x) that will be used to test the method
* \brief A function f(x) that will be used to test the method
* @param x The independent variable xi
* @returns the value of the dependent variable yi = f(xi)
*/
double f(double x);
/**
* @brief Another test function
*/
double g(double x);
/**
* @brief Another test function
*/
double k(double x);
/**
* @brief Another test function
*/
double l(double x);
double f(double x){
return std::sqrt(x) + std::log(x);
}
/** @brief Another test function */
double g(double x){
return std::exp(-x) * (4 - std::pow(x, 2));
}
/** @brief Another test function */
double k(double x){
return std::sqrt(2*std::pow(x, 3)+3);
}
/** @brief Another test function */
double l(double x){
return x + std::log(2*x+1);
}
/**
* \brief Self-test implememtations
* @param N is the number of intervals
* @param h is the step
* @param a is x0
* @param b is the end of the interval
* @param used_argv_parameters is 'true' if argv parameteres are given and 'false' if not
*/
static void test(int N, double h, double a,double b, bool used_argv_parameters){
// Call midpoint() for each of the test functions f, g, k, l
// Assert with two decimal point precision
double result_f = midpoint_rule::midpoint(N, h, a, f);
assert((used_argv_parameters || (result_f >= 4.09 && result_f <= 4.10)) && "The result of f(x) is wrong");
std::cout << "The result of integral f(x) on interval [" << a << ", " << b << "] is equal to: " << result_f << std::endl;
double result_g = midpoint_rule::midpoint(N, h, a, g);
assert((used_argv_parameters || (result_g >= 0.27 && result_g <= 0.28)) && "The result of g(x) is wrong");
std::cout << "The result of integral g(x) on interval [" << a << ", " << b << "] is equal to: " << result_g << std::endl;
double result_k = midpoint_rule::midpoint(N, h, a, k);
assert((used_argv_parameters || (result_k >= 9.06 && result_k <= 9.07)) && "The result of k(x) is wrong");
std::cout << "The result of integral k(x) on interval [" << a << ", " << b << "] is equal to: " << result_k << std::endl;
double result_l = midpoint_rule::midpoint(N, h, a, l);
assert((used_argv_parameters || (result_l >= 7.16 && result_l <= 7.17)) && "The result of l(x) is wrong");
std::cout << "The result of integral l(x) on interval [" << a << ", " << b << "] is equal to: " << result_l << std::endl;
}
/** main function */
int main(int argc, char** argv){
int N = 16; /// Number of intervals to divide the integration interval. MUST BE EVEN
double a = 1, b = 3; /// Starting and ending point of the integration in the real axis
@ -116,39 +141,7 @@ int main(int argc, char** argv){
// Find the step
h = (b-a)/N;
// Call midpoint() for each of the test functions f, g, k, l
// Assert with two decimal point precision
double result_f = midpoint_rule::midpoint(N, h, a, f);
assert((used_argv_parameters || (result_f >= 4.09 && result_f <= 4.10)) && "The result of f(x) is wrong");
std::cout << "The result of integral f(x) on interval [" << a << ", " << b << "] is equal to: " << result_f << std::endl;
double result_g = midpoint_rule::midpoint(N, h, a, g);
assert((used_argv_parameters || (result_g >= 0.27 && result_g <= 0.28)) && "The result of g(x) is wrong");
std::cout << "The result of integral g(x) on interval [" << a << ", " << b << "] is equal to: " << result_g << std::endl;
double result_k = midpoint_rule::midpoint(N, h, a, k);
assert((used_argv_parameters || (result_k >= 9.06 && result_k <= 9.07)) && "The result of k(x) is wrong");
std::cout << "The result of integral k(x) on interval [" << a << ", " << b << "] is equal to: " << result_k << std::endl;
double result_l = midpoint_rule::midpoint(N, h, a, l);
assert((used_argv_parameters || (result_l >= 7.16 && result_l <= 7.17)) && "The result of l(x) is wrong");
std::cout << "The result of integral l(x) on interval [" << a << ", " << b << "] is equal to: " << result_l << std::endl;
test(N, h, a, b, used_argv_parameters); /// run self-test implementations
return 0;
}
double f(double x){
return std::sqrt(x) + std::log(x);
}
double g(double x){
return std::exp(-x) * (4 - std::pow(x, 2));
}
double k(double x){
return std::sqrt(2*std::pow(x, 3)+3);
}
double l(double x){
return x + std::log(2*x+1);
}