mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
Improved Documentation
This commit is contained in:
parent
387218e081
commit
7b554f8080
@ -1,97 +1,122 @@
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
#include <cassert>
|
||||
#include <cstdlib>
|
||||
#include <functional>
|
||||
#include <map>
|
||||
#include <iostream> /// for IO operations
|
||||
#include <cmath> /// for math functions
|
||||
#include <cassert> /// for assert
|
||||
#include <cstdlib> /// for std::atof
|
||||
#include <functional> /// forstd::function
|
||||
#include <map> /// for std::map
|
||||
|
||||
/*!
|
||||
* @title Calculate definite integrals with midpoint method
|
||||
* @see https://en.wikipedia.org/wiki/Midpoint_method
|
||||
* @brief A numerical method for easy approximation of integrals
|
||||
* @details The idea is to split the interval into N of intervals and use as interpolation points the xi
|
||||
* @file
|
||||
* \brief A numerical method for easy approximation of integrals
|
||||
* \details The idea is to split the interval into N of intervals and use as interpolation points the xi
|
||||
* for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the
|
||||
* first and last points of the interval of the integration [a, b].
|
||||
*
|
||||
* We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula:
|
||||
* I = h * {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)}
|
||||
*
|
||||
* In this program there are 4 sample test functions f, g, k, l that are evaluated in the same interval [1, 3.
|
||||
*
|
||||
* Arguments can be passed as parameters from the command line argv[1] = N, argv[2] = a, argv[3] = b.
|
||||
* In this case if the default values N=16, a=1, b=3 are changed then the tests/assert are disabled.
|
||||
*
|
||||
* In the end of the main() and if and only if N, a, b are on their default values,
|
||||
* i compare the program's result with the one from mathematical software with 2 decimal points margin.
|
||||
* More info: [Link to wikipedia](https://en.wikipedia.org/wiki/Midpoint_method)
|
||||
*
|
||||
* Add your own sample function by replacing one of the f, g, k, l and the corresponding assert
|
||||
*
|
||||
* @author ggkogkou
|
||||
* @author [ggkogkou](https://github.com/ggkogkou)
|
||||
*/
|
||||
|
||||
/**
|
||||
* @namespace midpoint_rule
|
||||
* @brief Contains the function of the midpoint method implementation
|
||||
* \brief Contains the function of the midpoint method implementation
|
||||
*/
|
||||
namespace midpoint_rule{
|
||||
/*!
|
||||
* @fn double midpoint(const int N, const double h, const double a, const std::function<double (double)>& func)
|
||||
* @brief Implement midpoint method
|
||||
* @param N number of intervals
|
||||
* @param h step
|
||||
* @param a x0
|
||||
* @param func The function that will be evaluated
|
||||
* \brief Implement midpoint method
|
||||
* @param N is the number of intervals
|
||||
* @param h is the step
|
||||
* @param a is x0
|
||||
* @param func is the function that will be integrated
|
||||
* @returns the result of the integration
|
||||
*/
|
||||
double midpoint(const int N, const double h, const double a, const std::function<double (double)>& func){
|
||||
std::map<int, double> data_table; /// Contains the data points, key: i, value: f(xi)
|
||||
double xi = a; /// Initialize xi to the starting point x0 = a
|
||||
std::map<int, double> data_table; // Contains the data points, key: i, value: f(xi)
|
||||
double xi = a; // Initialize xi to the starting point x0 = a
|
||||
|
||||
// Create the data table
|
||||
/// Loop from x0 to xN-1
|
||||
// Loop from x0 to xN-1
|
||||
double temp;
|
||||
for(int i=0; i<N; i++){
|
||||
temp = func(xi + h/2); /// find f(xi+h/2)
|
||||
data_table.insert(std::pair<int ,double>(i, temp)); /// add i and f(xi)
|
||||
xi += h; /// Get the next point xi for the next iteration
|
||||
temp = func(xi + h/2); // find f(xi+h/2)
|
||||
data_table.insert(std::pair<int ,double>(i, temp)); // add i and f(xi)
|
||||
xi += h; // Get the next point xi for the next iteration
|
||||
}
|
||||
|
||||
/// Evaluate the integral.
|
||||
// Evaluate the integral.
|
||||
// Remember: {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)}
|
||||
double evaluate_integral = 0;
|
||||
for(int i=0; i<N; i++) evaluate_integral += data_table.at(i);
|
||||
|
||||
/// Multiply by the coefficient h
|
||||
// Multiply by the coefficient h
|
||||
evaluate_integral *= h;
|
||||
|
||||
/// If the result calculated is nan, then the user has given wrong input interval.
|
||||
// If the result calculated is nan, then the user has given wrong input interval.
|
||||
assert(!std::isnan(evaluate_integral) && "The definite integral can't be evaluated. Check the validity of your input.\n");
|
||||
// Else return
|
||||
return evaluate_integral;
|
||||
}
|
||||
|
||||
} // midpoint_rule ends here
|
||||
} // namespace midpoint_rule
|
||||
|
||||
/**
|
||||
* @fn double f(double x)
|
||||
* @brief A function f(x) that will be used to test the method
|
||||
* \brief A function f(x) that will be used to test the method
|
||||
* @param x The independent variable xi
|
||||
* @returns the value of the dependent variable yi = f(xi)
|
||||
*/
|
||||
double f(double x);
|
||||
/**
|
||||
* @brief Another test function
|
||||
*/
|
||||
double g(double x);
|
||||
/**
|
||||
* @brief Another test function
|
||||
*/
|
||||
double k(double x);
|
||||
/**
|
||||
* @brief Another test function
|
||||
*/
|
||||
double l(double x);
|
||||
double f(double x){
|
||||
return std::sqrt(x) + std::log(x);
|
||||
}
|
||||
/** @brief Another test function */
|
||||
double g(double x){
|
||||
return std::exp(-x) * (4 - std::pow(x, 2));
|
||||
}
|
||||
/** @brief Another test function */
|
||||
double k(double x){
|
||||
return std::sqrt(2*std::pow(x, 3)+3);
|
||||
}
|
||||
/** @brief Another test function */
|
||||
double l(double x){
|
||||
return x + std::log(2*x+1);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Self-test implememtations
|
||||
* @param N is the number of intervals
|
||||
* @param h is the step
|
||||
* @param a is x0
|
||||
* @param b is the end of the interval
|
||||
* @param used_argv_parameters is 'true' if argv parameteres are given and 'false' if not
|
||||
*/
|
||||
static void test(int N, double h, double a,double b, bool used_argv_parameters){
|
||||
// Call midpoint() for each of the test functions f, g, k, l
|
||||
// Assert with two decimal point precision
|
||||
double result_f = midpoint_rule::midpoint(N, h, a, f);
|
||||
assert((used_argv_parameters || (result_f >= 4.09 && result_f <= 4.10)) && "The result of f(x) is wrong");
|
||||
std::cout << "The result of integral f(x) on interval [" << a << ", " << b << "] is equal to: " << result_f << std::endl;
|
||||
|
||||
double result_g = midpoint_rule::midpoint(N, h, a, g);
|
||||
assert((used_argv_parameters || (result_g >= 0.27 && result_g <= 0.28)) && "The result of g(x) is wrong");
|
||||
std::cout << "The result of integral g(x) on interval [" << a << ", " << b << "] is equal to: " << result_g << std::endl;
|
||||
|
||||
double result_k = midpoint_rule::midpoint(N, h, a, k);
|
||||
assert((used_argv_parameters || (result_k >= 9.06 && result_k <= 9.07)) && "The result of k(x) is wrong");
|
||||
std::cout << "The result of integral k(x) on interval [" << a << ", " << b << "] is equal to: " << result_k << std::endl;
|
||||
|
||||
double result_l = midpoint_rule::midpoint(N, h, a, l);
|
||||
assert((used_argv_parameters || (result_l >= 7.16 && result_l <= 7.17)) && "The result of l(x) is wrong");
|
||||
std::cout << "The result of integral l(x) on interval [" << a << ", " << b << "] is equal to: " << result_l << std::endl;
|
||||
|
||||
}
|
||||
|
||||
/** main function */
|
||||
int main(int argc, char** argv){
|
||||
int N = 16; /// Number of intervals to divide the integration interval. MUST BE EVEN
|
||||
double a = 1, b = 3; /// Starting and ending point of the integration in the real axis
|
||||
@ -116,39 +141,7 @@ int main(int argc, char** argv){
|
||||
// Find the step
|
||||
h = (b-a)/N;
|
||||
|
||||
// Call midpoint() for each of the test functions f, g, k, l
|
||||
// Assert with two decimal point precision
|
||||
double result_f = midpoint_rule::midpoint(N, h, a, f);
|
||||
assert((used_argv_parameters || (result_f >= 4.09 && result_f <= 4.10)) && "The result of f(x) is wrong");
|
||||
std::cout << "The result of integral f(x) on interval [" << a << ", " << b << "] is equal to: " << result_f << std::endl;
|
||||
|
||||
double result_g = midpoint_rule::midpoint(N, h, a, g);
|
||||
assert((used_argv_parameters || (result_g >= 0.27 && result_g <= 0.28)) && "The result of g(x) is wrong");
|
||||
std::cout << "The result of integral g(x) on interval [" << a << ", " << b << "] is equal to: " << result_g << std::endl;
|
||||
|
||||
double result_k = midpoint_rule::midpoint(N, h, a, k);
|
||||
assert((used_argv_parameters || (result_k >= 9.06 && result_k <= 9.07)) && "The result of k(x) is wrong");
|
||||
std::cout << "The result of integral k(x) on interval [" << a << ", " << b << "] is equal to: " << result_k << std::endl;
|
||||
|
||||
double result_l = midpoint_rule::midpoint(N, h, a, l);
|
||||
assert((used_argv_parameters || (result_l >= 7.16 && result_l <= 7.17)) && "The result of l(x) is wrong");
|
||||
std::cout << "The result of integral l(x) on interval [" << a << ", " << b << "] is equal to: " << result_l << std::endl;
|
||||
test(N, h, a, b, used_argv_parameters); /// run self-test implementations
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
double f(double x){
|
||||
return std::sqrt(x) + std::log(x);
|
||||
}
|
||||
|
||||
double g(double x){
|
||||
return std::exp(-x) * (4 - std::pow(x, 2));
|
||||
}
|
||||
|
||||
double k(double x){
|
||||
return std::sqrt(2*std::pow(x, 3)+3);
|
||||
}
|
||||
|
||||
double l(double x){
|
||||
return x + std::log(2*x+1);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user