mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
fixed Code quality and added docs
This commit is contained in:
parent
886cb520f0
commit
8252816dcc
@ -1,3 +1,24 @@
|
|||||||
|
/**
|
||||||
|
*
|
||||||
|
* \file
|
||||||
|
* \brief [Disjoint Sets Data Structure
|
||||||
|
* (Disjoint Sets)](https://en.wikipedia.org/wiki/Disjoint-set_data_structure)
|
||||||
|
*
|
||||||
|
* \author
|
||||||
|
*
|
||||||
|
* \details
|
||||||
|
* A disjoint set data structure (also called union find or merge find set)
|
||||||
|
* is a data structure that tracks a set of elements partitioned into a number
|
||||||
|
* of disjoint (non-overlapping) subsets.
|
||||||
|
* Some situations where disjoint sets can be used are-
|
||||||
|
* to find connected components of a graph, kruskal's algorithm for finding
|
||||||
|
* Minimum Spanning Tree etc.
|
||||||
|
* There are two operation which we perform on disjoint sets -
|
||||||
|
* 1) Union
|
||||||
|
* 2) Find
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
@ -5,16 +26,30 @@ using std::cout;
|
|||||||
using std::endl;
|
using std::endl;
|
||||||
using std::vector;
|
using std::vector;
|
||||||
|
|
||||||
vector<int> root, rnk;
|
vector<int> root, rank;
|
||||||
|
|
||||||
|
/**
|
||||||
|
*
|
||||||
|
* Function to create a set
|
||||||
|
* @param n number of element
|
||||||
|
*
|
||||||
|
*/
|
||||||
void CreateSet(int n) {
|
void CreateSet(int n) {
|
||||||
root = vector<int>(n + 1);
|
root = vector<int>(n + 1);
|
||||||
rnk = vector<int>(n + 1, 1);
|
rank = vector<int>(n + 1, 1);
|
||||||
for (int i = 1; i <= n; ++i) {
|
for (int i = 1; i <= n; ++i) {
|
||||||
root[i] = i;
|
root[i] = i;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
*
|
||||||
|
* Find operation takes a number x and returns the set to which this number
|
||||||
|
* belongs to.
|
||||||
|
* @param x element of some set
|
||||||
|
* @return set to which x belongs to
|
||||||
|
*
|
||||||
|
*/
|
||||||
int Find(int x) {
|
int Find(int x) {
|
||||||
if (root[x] == x) {
|
if (root[x] == x) {
|
||||||
return x;
|
return x;
|
||||||
@ -22,22 +57,39 @@ int Find(int x) {
|
|||||||
return root[x] = Find(root[x]);
|
return root[x] = Find(root[x]);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
*
|
||||||
|
* A utility function to check if x and y are from same set or not
|
||||||
|
* @param x element of some set
|
||||||
|
* @param y element of some set
|
||||||
|
*
|
||||||
|
*/
|
||||||
bool InSameUnion(int x, int y) { return Find(x) == Find(y); }
|
bool InSameUnion(int x, int y) { return Find(x) == Find(y); }
|
||||||
|
|
||||||
|
/**
|
||||||
|
*
|
||||||
|
* Union operation combines two disjoint sets to make a single set
|
||||||
|
* in this union function we pass two elements and check if they are
|
||||||
|
* from different sets then combine those sets
|
||||||
|
* @param x element of some set
|
||||||
|
* @param y element of some set
|
||||||
|
*
|
||||||
|
*/
|
||||||
void Union(int x, int y) {
|
void Union(int x, int y) {
|
||||||
int a = Find(x), b = Find(y);
|
int a = Find(x), b = Find(y);
|
||||||
if (a != b) {
|
if (a != b) {
|
||||||
if (rnk[a] < rnk[b]) {
|
if (rank[a] < rank[b]) {
|
||||||
root[a] = b;
|
root[a] = b;
|
||||||
} else if (rnk[a] > rnk[b]) {
|
} else if (rank[a] > rank[b]) {
|
||||||
root[b] = a;
|
root[b] = a;
|
||||||
} else {
|
} else {
|
||||||
root[a] = b;
|
root[a] = b;
|
||||||
++rnk[b];
|
++rank[b];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/** Main function */
|
||||||
int main() {
|
int main() {
|
||||||
// tests CreateSet & Find
|
// tests CreateSet & Find
|
||||||
int n = 100;
|
int n = 100;
|
||||||
|
Loading…
Reference in New Issue
Block a user