mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
feat: Modify search/text_search.cpp (#1662)
* Modified search/text_search.cpp * Added tests * Added a few test cases * Added a few more test cases and documentation * Minor fix * Minor fixes * Minor fixes * Minor output fixes * Minor output fixes * Minor readability fixes * clang-format and clang-tidy fixes fora01765a6
* Restored original settings * clang-format and clang-tidy fixes for6a8f3a4e
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: David Leal <halfpacho@gmail.com>
This commit is contained in:
parent
5a654fb85b
commit
85721be69b
@ -15,7 +15,7 @@ void push(int x) {
|
||||
}
|
||||
|
||||
void pop() {
|
||||
if (top_var == NULL) {
|
||||
if (top_var == nullptr) {
|
||||
std::cout << "\nUnderflow";
|
||||
} else {
|
||||
node *t = top_var;
|
||||
@ -27,14 +27,14 @@ void pop() {
|
||||
|
||||
void show() {
|
||||
node *t = top_var;
|
||||
while (t != NULL) {
|
||||
while (t != nullptr) {
|
||||
std::cout << t->val << "\n";
|
||||
t = t->next;
|
||||
}
|
||||
}
|
||||
|
||||
int main() {
|
||||
int ch, x;
|
||||
int ch = 0, x = 0;
|
||||
do {
|
||||
std::cout << "\n0. Exit or Ctrl+C";
|
||||
std::cout << "\n1. Push";
|
||||
@ -43,16 +43,22 @@ int main() {
|
||||
std::cout << "\nEnter Your Choice: ";
|
||||
std::cin >> ch;
|
||||
switch (ch) {
|
||||
case 0: break;
|
||||
case 1: std::cout << "\nInsert : ";
|
||||
case 0:
|
||||
break;
|
||||
case 1:
|
||||
std::cout << "\nInsert : ";
|
||||
std::cin >> x;
|
||||
push(x);
|
||||
break;
|
||||
case 2: pop();
|
||||
case 2:
|
||||
pop();
|
||||
break;
|
||||
case 3: show();
|
||||
case 3:
|
||||
show();
|
||||
break;
|
||||
default:
|
||||
std::cout << "Invalid option!\n";
|
||||
break;
|
||||
default: std::cout << "Invalid option!\n"; break;
|
||||
}
|
||||
} while (ch != 0);
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
// Program to check whether a number is an armstrong number or not
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
using std::cin;
|
||||
using std::cout;
|
||||
|
||||
@ -25,15 +25,13 @@ int main() {
|
||||
temp = n;
|
||||
while (temp != 0) {
|
||||
rem = temp % 10;
|
||||
sum += (int) pow(rem,count);
|
||||
sum += static_cast<int>(pow(rem, count));
|
||||
temp /= 10;
|
||||
}
|
||||
|
||||
|
||||
if (sum == n) {
|
||||
cout << n << " is an armstrong number";
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
cout << n << " is not an armstrong number";
|
||||
}
|
||||
|
||||
|
@ -1,13 +1,16 @@
|
||||
/**
|
||||
* @file
|
||||
* @brief [Geometric Distribution](https://en.wikipedia.org/wiki/Geometric_distribution)
|
||||
* @brief [Geometric
|
||||
* Distribution](https://en.wikipedia.org/wiki/Geometric_distribution)
|
||||
*
|
||||
* @details
|
||||
* The geometric distribution models the experiment of doing Bernoulli trials until a
|
||||
* sucess was observed. There are two formulations of the geometric distribution:
|
||||
* 1) The probability distribution of the number X of Bernoulli trials needed to get one success, supported on the set { 1, 2, 3, ... }
|
||||
* 2) The probability distribution of the number Y = X − 1 of failures before the first success, supported on the set { 0, 1, 2, 3, ... }
|
||||
* Here, the first one is implemented.
|
||||
* The geometric distribution models the experiment of doing Bernoulli trials
|
||||
* until a sucess was observed. There are two formulations of the geometric
|
||||
* distribution: 1) The probability distribution of the number X of Bernoulli
|
||||
* trials needed to get one success, supported on the set { 1, 2, 3, ... } 2)
|
||||
* The probability distribution of the number Y = X − 1 of failures before the
|
||||
* first success, supported on the set { 0, 1, 2, 3, ... } Here, the first one
|
||||
* is implemented.
|
||||
*
|
||||
* Common variables used:
|
||||
* p - The success probability
|
||||
@ -32,12 +35,15 @@
|
||||
namespace probability {
|
||||
/**
|
||||
* @namespace geometric_dist
|
||||
* @brief Functions for the [Geometric Distribution](https://en.wikipedia.org/wiki/Geometric_distribution) algorithm implementation
|
||||
* @brief Functions for the [Geometric
|
||||
* Distribution](https://en.wikipedia.org/wiki/Geometric_distribution) algorithm
|
||||
* implementation
|
||||
*/
|
||||
namespace geometric_dist {
|
||||
/**
|
||||
* @brief Returns a random number between [0,1]
|
||||
* @returns A uniformly distributed random number between 0 (included) and 1 (included)
|
||||
* @returns A uniformly distributed random number between 0 (included) and 1
|
||||
* (included)
|
||||
*/
|
||||
float generate_uniform() {
|
||||
return static_cast<float>(rand()) / static_cast<float>(RAND_MAX);
|
||||
@ -46,8 +52,7 @@ float generate_uniform() {
|
||||
/**
|
||||
* @brief A class to model the geometric distribution
|
||||
*/
|
||||
class geometric_distribution
|
||||
{
|
||||
class geometric_distribution {
|
||||
private:
|
||||
float p; ///< The succes probability p
|
||||
|
||||
@ -59,28 +64,24 @@ public:
|
||||
explicit geometric_distribution(const float& p) : p(p) {}
|
||||
|
||||
/**
|
||||
* @brief The expected value of a geometrically distributed random variable X
|
||||
* @brief The expected value of a geometrically distributed random variable
|
||||
* X
|
||||
* @returns E[X] = 1/p
|
||||
*/
|
||||
float expected_value() const {
|
||||
return 1.0f/ p;
|
||||
}
|
||||
float expected_value() const { return 1.0f / p; }
|
||||
|
||||
/**
|
||||
* @brief The variance of a geometrically distributed random variable X
|
||||
* @returns V[X] = (1 - p) / p^2
|
||||
*/
|
||||
float variance() const {
|
||||
return (1.0f - p) / (p * p);
|
||||
}
|
||||
float variance() const { return (1.0f - p) / (p * p); }
|
||||
|
||||
/**
|
||||
* @brief The standard deviation of a geometrically distributed random variable X
|
||||
* @brief The standard deviation of a geometrically distributed random
|
||||
* variable X
|
||||
* @returns \sigma = \sqrt{V[X]}
|
||||
*/
|
||||
float standard_deviation() const {
|
||||
return std::sqrt(variance());
|
||||
}
|
||||
float standard_deviation() const { return std::sqrt(variance()); }
|
||||
|
||||
/**
|
||||
* @brief The probability density function
|
||||
@ -95,7 +96,8 @@ public:
|
||||
|
||||
/**
|
||||
* @brief The cumulative distribution function
|
||||
* @details The sum of all probabilities up to (and including) k trials. Basically CDF(k) = P(x <= k)
|
||||
* @details The sum of all probabilities up to (and including) k trials.
|
||||
* Basically CDF(k) = P(x <= k)
|
||||
* @param k The number of trials in [1,\infty)
|
||||
* @returns The probability to have success within k trials
|
||||
*/
|
||||
@ -105,8 +107,9 @@ public:
|
||||
|
||||
/**
|
||||
* @brief The inverse cumulative distribution function
|
||||
* @details This functions answers the question: Up to how many trials are needed to have success with a probability of cdf?
|
||||
* The exact floating point value is reported.
|
||||
* @details This functions answers the question: Up to how many trials are
|
||||
* needed to have success with a probability of cdf? The exact floating
|
||||
* point value is reported.
|
||||
* @param cdf The probability in [0,1]
|
||||
* @returns The number of (exact) trials.
|
||||
*/
|
||||
@ -115,26 +118,37 @@ public:
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Generates a (discrete) sample according to the geometrical distribution
|
||||
* @brief Generates a (discrete) sample according to the geometrical
|
||||
* distribution
|
||||
* @returns A geometrically distributed number in [1,\infty)
|
||||
*/
|
||||
uint32_t draw_sample() const {
|
||||
float uniform_sample = generate_uniform();
|
||||
return static_cast<uint32_t>(inverse_cumulative_distribution(uniform_sample)) + 1;
|
||||
return static_cast<uint32_t>(
|
||||
inverse_cumulative_distribution(uniform_sample)) +
|
||||
1;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This function computes the probability to have success in a given range of tries
|
||||
* @brief This function computes the probability to have success in a given
|
||||
* range of tries
|
||||
* @details Computes P(min_tries <= x <= max_tries).
|
||||
* Can be used to calculate P(x >= min_tries) by not passing a second argument.
|
||||
* Can be used to calculate P(x <= max_tries) by passing 1 as the first argument
|
||||
* Can be used to calculate P(x >= min_tries) by not passing a second
|
||||
* argument. Can be used to calculate P(x <= max_tries) by passing 1 as the
|
||||
* first argument
|
||||
* @param min_tries The minimum number of tries in [1,\infty) (inclusive)
|
||||
* @param max_tries The maximum number of tries in [min_tries, \infty) (inclusive)
|
||||
* @returns The probability of having success within a range of tries [min_tries, max_tries]
|
||||
* @param max_tries The maximum number of tries in [min_tries, \infty)
|
||||
* (inclusive)
|
||||
* @returns The probability of having success within a range of tries
|
||||
* [min_tries, max_tries]
|
||||
*/
|
||||
float range_tries(const uint32_t& min_tries = 1, const uint32_t& max_tries = std::numeric_limits<uint32_t>::max()) const {
|
||||
float range_tries(const uint32_t& min_tries = 1,
|
||||
const uint32_t& max_tries =
|
||||
std::numeric_limits<uint32_t>::max()) const {
|
||||
float cdf_lower = cumulative_distribution(min_tries - 1);
|
||||
float cdf_upper = max_tries == std::numeric_limits<uint32_t>::max() ? 1.0f : cumulative_distribution(max_tries);
|
||||
float cdf_upper = max_tries == std::numeric_limits<uint32_t>::max()
|
||||
? 1.0f
|
||||
: cumulative_distribution(max_tries);
|
||||
return cdf_upper - cdf_lower;
|
||||
}
|
||||
};
|
||||
@ -144,10 +158,12 @@ public:
|
||||
/**
|
||||
* @brief Tests the sampling method of the geometric distribution
|
||||
* @details Draws 1000000 random samples and estimates mean and variance
|
||||
* These should be close to the expected value and variance of the given distribution to pass.
|
||||
* These should be close to the expected value and variance of the given
|
||||
* distribution to pass.
|
||||
* @param dist The distribution to test
|
||||
*/
|
||||
void sample_test(const probability::geometric_dist::geometric_distribution& dist) {
|
||||
void sample_test(
|
||||
const probability::geometric_dist::geometric_distribution& dist) {
|
||||
uint32_t n_tries = 1000000;
|
||||
std::vector<float> tries;
|
||||
tries.resize(n_tries);
|
||||
@ -168,8 +184,10 @@ void sample_test(const probability::geometric_dist::geometric_distribution& dist
|
||||
// Unbiased estimate of variance
|
||||
var /= static_cast<float>(n_tries - 1);
|
||||
|
||||
std::cout << "This value should be near " << dist.expected_value() << ": " << mean << std::endl;
|
||||
std::cout << "This value should be near " << dist.variance() << ": " << var << std::endl;
|
||||
std::cout << "This value should be near " << dist.expected_value() << ": "
|
||||
<< mean << std::endl;
|
||||
std::cout << "This value should be near " << dist.variance() << ": " << var
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -187,7 +205,9 @@ static void test() {
|
||||
assert(std::abs(dist.standard_deviation() - 2.788866755) < threshold);
|
||||
assert(std::abs(dist.probability_density(5) - 0.07203) < threshold);
|
||||
assert(std::abs(dist.cumulative_distribution(6) - 0.882351) < threshold);
|
||||
assert(std::abs(dist.inverse_cumulative_distribution(dist.cumulative_distribution(8)) - 8) < threshold);
|
||||
assert(std::abs(dist.inverse_cumulative_distribution(
|
||||
dist.cumulative_distribution(8)) -
|
||||
8) < threshold);
|
||||
assert(std::abs(dist.range_tries() - 1.0f) < threshold);
|
||||
assert(std::abs(dist.range_tries(3) - 0.49f) < threshold);
|
||||
assert(std::abs(dist.range_tries(5, 11) - 0.2203267f) < threshold);
|
||||
@ -202,7 +222,9 @@ static void test() {
|
||||
assert(std::abs(dist.standard_deviation() - 1.4142135f) < threshold);
|
||||
assert(std::abs(dist.probability_density(5) - 0.03125) < threshold);
|
||||
assert(std::abs(dist.cumulative_distribution(6) - 0.984375) < threshold);
|
||||
assert(std::abs(dist.inverse_cumulative_distribution(dist.cumulative_distribution(8)) - 8) < threshold);
|
||||
assert(std::abs(dist.inverse_cumulative_distribution(
|
||||
dist.cumulative_distribution(8)) -
|
||||
8) < threshold);
|
||||
assert(std::abs(dist.range_tries() - 1.0f) < threshold);
|
||||
assert(std::abs(dist.range_tries(3) - 0.25f) < threshold);
|
||||
assert(std::abs(dist.range_tries(5, 11) - 0.062011f) < threshold);
|
||||
@ -217,7 +239,9 @@ static void test() {
|
||||
assert(std::abs(dist.standard_deviation() - 0.559016f) < threshold);
|
||||
assert(std::abs(dist.probability_density(5) - 0.00128) < threshold);
|
||||
assert(std::abs(dist.cumulative_distribution(6) - 0.999936) < threshold);
|
||||
assert(std::abs(dist.inverse_cumulative_distribution(dist.cumulative_distribution(8)) - 8) < threshold);
|
||||
assert(std::abs(dist.inverse_cumulative_distribution(
|
||||
dist.cumulative_distribution(8)) -
|
||||
8) < threshold);
|
||||
assert(std::abs(dist.range_tries() - 1.0f) < threshold);
|
||||
assert(std::abs(dist.range_tries(3) - 0.04f) < threshold);
|
||||
assert(std::abs(dist.range_tries(5, 11) - 0.00159997f) < threshold);
|
||||
|
@ -4,8 +4,8 @@
|
||||
* data stream
|
||||
*
|
||||
* @details
|
||||
* Given a stream of integers, the algorithm calculates the median of a fixed size
|
||||
* window at the back of the stream. The leading time complexity of this
|
||||
* Given a stream of integers, the algorithm calculates the median of a fixed
|
||||
* size window at the back of the stream. The leading time complexity of this
|
||||
* algorithm is O(log(N), and it is inspired by the known algorithm to [find
|
||||
* median from (infinite) data
|
||||
* stream](https://www.tutorialcup.com/interview/algorithm/find-median-from-data-stream.htm),
|
||||
@ -17,13 +17,13 @@
|
||||
* pushing and popping. Each new value is pushed to the window back, while a
|
||||
* value from the front of the window is popped. In addition, the algorithm
|
||||
* manages a multi-value binary search tree (BST), implemented by std::multiset.
|
||||
* For each new value that is inserted into the window, it is also inserted to the
|
||||
* BST. When a value is popped from the window, it is also erased from the BST.
|
||||
* Both insertion and erasion to/from the BST are O(logN) in time, with N the
|
||||
* size of the window. Finally, the algorithm keeps a pointer to the root of the
|
||||
* BST, and updates its position whenever values are inserted or erased to/from
|
||||
* BST. The root of the tree is the median! Hence, median retrieval is always
|
||||
* O(1)
|
||||
* For each new value that is inserted into the window, it is also inserted to
|
||||
* the BST. When a value is popped from the window, it is also erased from the
|
||||
* BST. Both insertion and erasion to/from the BST are O(logN) in time, with N
|
||||
* the size of the window. Finally, the algorithm keeps a pointer to the root of
|
||||
* the BST, and updates its position whenever values are inserted or erased
|
||||
* to/from BST. The root of the tree is the median! Hence, median retrieval is
|
||||
* always O(1)
|
||||
*
|
||||
* Time complexity: O(logN). Space complexity: O(N). N - size of window
|
||||
* @author [Yaniv Hollander](https://github.com/YanivHollander)
|
||||
@ -103,13 +103,14 @@ class WindowedMedian {
|
||||
}
|
||||
|
||||
/// However, if the erased value is on the right branch or the median
|
||||
/// itself, and the number of elements is odd, the new median will be the
|
||||
/// left child of the current one
|
||||
/// itself, and the number of elements is odd, the new median will be
|
||||
/// the left child of the current one
|
||||
else if (value >= *_itMedian && sz % 2 != 0) {
|
||||
--_itMedian; // O(1) - traversing one step to the left child
|
||||
}
|
||||
|
||||
/// Find the (first) position of the value we want to erase, and erase it
|
||||
/// Find the (first) position of the value we want to erase, and erase
|
||||
/// it
|
||||
const auto it = _sortedValues.find(value); // O(logN)
|
||||
_sortedValues.erase(it); // O(logN)
|
||||
}
|
||||
@ -126,16 +127,16 @@ class WindowedMedian {
|
||||
* @param value New value to insert
|
||||
*/
|
||||
void insert(int value) {
|
||||
|
||||
/// Push new value to the back of the sliding window - O(1)
|
||||
_window.push_back(value);
|
||||
insertToSorted(value); // Insert value to the multi-value BST - O(logN)
|
||||
if (_window.size() > _windowSize) { /// If exceeding size of window, pop
|
||||
/// from its left side
|
||||
eraseFromSorted(_window.front()); /// Erase from the multi-value BST
|
||||
if (_window.size() > _windowSize) { /// If exceeding size of window,
|
||||
/// pop from its left side
|
||||
eraseFromSorted(
|
||||
_window.front()); /// Erase from the multi-value BST
|
||||
/// the window left side value
|
||||
_window
|
||||
.pop_front(); /// Pop the left side value from the window - O(1)
|
||||
_window.pop_front(); /// Pop the left side value from the window -
|
||||
/// O(1)
|
||||
}
|
||||
}
|
||||
|
||||
@ -170,8 +171,8 @@ class WindowedMedian {
|
||||
0.5f * *next(window.begin(), window.size() / 2 - 1); /// O(N)
|
||||
}
|
||||
};
|
||||
} /// namespace windowed_median
|
||||
} /// namespace probability
|
||||
} // namespace windowed_median
|
||||
} // namespace probability
|
||||
|
||||
/**
|
||||
* @brief Self-test implementations
|
||||
@ -195,30 +196,39 @@ static void test(const std::vector<int> &vals, int windowSize) {
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main(int argc, const char *argv[]) {
|
||||
|
||||
/// A few fixed test cases
|
||||
test({1, 2, 3, 4, 5, 6, 7, 8, 9}, 3); /// Array of sorted values; odd window size
|
||||
test({9, 8, 7, 6, 5, 4, 3, 2, 1}, 3); /// Array of sorted values - decreasing; odd window size
|
||||
test({1, 2, 3, 4, 5, 6, 7, 8, 9},
|
||||
3); /// Array of sorted values; odd window size
|
||||
test({9, 8, 7, 6, 5, 4, 3, 2, 1},
|
||||
3); /// Array of sorted values - decreasing; odd window size
|
||||
test({9, 8, 7, 6, 5, 4, 5, 6}, 4); /// Even window size
|
||||
test({3, 3, 3, 3, 3, 3, 3, 3, 3}, 3); /// Array with repeating values
|
||||
test({3, 3, 3, 3, 7, 3, 3, 3, 3}, 3); /// Array with same values except one
|
||||
test({4, 3, 3, -5, -5, 1, 3, 4, 5}, 5); /// Array that includes repeating values including negatives
|
||||
test({4, 3, 3, -5, -5, 1, 3, 4, 5},
|
||||
5); /// Array that includes repeating values including negatives
|
||||
|
||||
/// Array with large values - sum of few pairs exceeds MAX_INT. Window size is even - testing calculation of
|
||||
/// average median between two middle values
|
||||
/// Array with large values - sum of few pairs exceeds MAX_INT. Window size
|
||||
/// is even - testing calculation of average median between two middle
|
||||
/// values
|
||||
test({470211272, 101027544, 1457850878, 1458777923, 2007237709, 823564440,
|
||||
1115438165, 1784484492, 74243042, 114807987}, 6);
|
||||
1115438165, 1784484492, 74243042, 114807987},
|
||||
6);
|
||||
|
||||
/// Random test cases
|
||||
std::srand(static_cast<unsigned int>(std::time(nullptr)));
|
||||
std::vector<int> vals;
|
||||
for (int i = 8; i < 100; i++) {
|
||||
const auto n = 1 + std::rand() / ((RAND_MAX + 5u) / 20); /// Array size in the range [5, 20]
|
||||
auto windowSize = 1 + std::rand() / ((RAND_MAX + 3u) / 10); /// Window size in the range [3, 10]
|
||||
const auto n =
|
||||
1 + std::rand() /
|
||||
((RAND_MAX + 5u) / 20); /// Array size in the range [5, 20]
|
||||
auto windowSize =
|
||||
1 + std::rand() / ((RAND_MAX + 3u) /
|
||||
10); /// Window size in the range [3, 10]
|
||||
vals.clear();
|
||||
vals.reserve(n);
|
||||
for (int i = 0; i < n; i++) {
|
||||
vals.push_back(rand() - RAND_MAX); /// Random array values (positive/negative)
|
||||
vals.push_back(
|
||||
rand() - RAND_MAX); /// Random array values (positive/negative)
|
||||
}
|
||||
test(vals, windowSize); /// Testing randomized test
|
||||
}
|
||||
|
@ -2,6 +2,7 @@
|
||||
* \file
|
||||
* \brief Search for words in a long textual paragraph.
|
||||
*/
|
||||
#include <cassert>
|
||||
#include <cstdlib>
|
||||
#include <iostream>
|
||||
#ifdef _MSC_VER
|
||||
@ -10,9 +11,38 @@
|
||||
#include <cstring>
|
||||
#endif
|
||||
|
||||
/** Main function
|
||||
/**
|
||||
* @brief function to convert a C++ string to lower case
|
||||
* @param word takes an std::string as input
|
||||
* @returns std::string
|
||||
*/
|
||||
std::string lower(std::string word) {
|
||||
int length = word.length();
|
||||
std::string lc = "";
|
||||
|
||||
for (int i = 0; i < length; i++) {
|
||||
lc += tolower(word[i]);
|
||||
}
|
||||
|
||||
return lc;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Self-test implementations
|
||||
* @returns void
|
||||
*/
|
||||
static void test() {
|
||||
assert(lower("abcd").compare("abcd") == 0);
|
||||
assert(lower("abc").compare("abcd") == -1);
|
||||
assert(lower("abcd").compare("abc") == 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main() {
|
||||
test(); // run self-test implementations
|
||||
std::string paragraph;
|
||||
std::cout << "Please enter your paragraph: \n";
|
||||
std::getline(std::cin, paragraph);
|
||||
@ -23,20 +53,46 @@ int main() {
|
||||
if (paragraph.empty()) {
|
||||
std::cout << "\nThe paragraph is empty" << std::endl;
|
||||
} else {
|
||||
int ch = 0;
|
||||
while (true) {
|
||||
std::string word;
|
||||
std::cout << "Please enter the word you are searching for: ";
|
||||
std::getline(std::cin, word);
|
||||
std::cout << "Ignore case-sensitive? 1 = Yes, 0 = No" << std::endl;
|
||||
std::cin >> ch;
|
||||
if (ch == 1) {
|
||||
std::string lowerCase = lower(
|
||||
paragraph); // convert std::string paragraph to lowercase
|
||||
// and store it in std::string lowerCase
|
||||
std::string lowerCaseWord =
|
||||
lower(word); // convert std::string paragraph to lowercase
|
||||
// and store it in std::string lowerCase
|
||||
|
||||
std::cout << "Hello, your word is " << word << "!\n";
|
||||
if (lowerCase.find(lowerCaseWord) == std::string::npos) {
|
||||
std::cout << word << " does not exist in the sentence"
|
||||
<< std::endl;
|
||||
} else {
|
||||
std::cout << "The word " << word
|
||||
<< " is now found at location "
|
||||
<< lowerCase.find(lowerCaseWord) << std::endl
|
||||
<< std::endl;
|
||||
}
|
||||
} else {
|
||||
std::cout << "Hello, your word is " << word << "!\n";
|
||||
if (paragraph.find(word) == std::string::npos) {
|
||||
std::cout << word << " does not exist in the sentence"
|
||||
<< std::endl;
|
||||
} else {
|
||||
std::cout << "The word " << word << " is now found at location "
|
||||
std::cout << "The word " << word
|
||||
<< " is now found at location "
|
||||
<< paragraph.find(word) << std::endl
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
std::cout << "\nPress Ctrl + C to exit the program.\n\n";
|
||||
std::cin.get();
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user