Merge remote-tracking branch 'upstream/master'

This commit is contained in:
Ashish Bhanu Daulatabad 2021-03-20 22:19:52 +05:30
commit 8647a797bb
6 changed files with 771 additions and 3 deletions

1
.github/stale.yml vendored
View File

@ -13,6 +13,7 @@ onlyLabels: []
# Issues or Pull Requests with these labels will never be considered stale. Set to `[]` to disable
exemptLabels:
- "approved"
- "dont-close"
# Set to true to ignore issues in a project (defaults to false)
exemptProjects: false

48
.github/workflows/codeql_analysis.yml vendored Normal file
View File

@ -0,0 +1,48 @@
name: "CodeQL"
on: [push, pull_request]
jobs:
analyze:
name: Analyze
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
language: [ 'cpp' ]
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
# Learn more:
# https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
steps:
- name: Checkout repository
uses: actions/checkout@main
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@main
with:
languages: ${{ matrix.language }}
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.
# queries: ./path/to/local/query, your-org/your-repo/queries@main
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
# If this step fails, then you should remove it and run the build manually (see below)
- name: Autobuild
uses: github/codeql-action/autobuild@main
# Command-line programs to run using the OS shell.
# 📚 https://git.io/JvXDl
# ✏️ If the Autobuild fails above, remove it and uncomment the following three lines
# and modify them (or add more) to build your code if your project
# uses a compiled language
#- run: |
# make bootstrap
# make release
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@main

View File

@ -54,6 +54,7 @@
* [Tree 234](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/tree_234.cpp)
* [Trie Modern](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/trie_modern.cpp)
* [Trie Tree](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/trie_tree.cpp)
* [Trie Using Hashmap](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/trie_using_hashmap.cpp)
## Dynamic Programming
* [0 1 Knapsack](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/dynamic_programming/0_1_knapsack.cpp)
@ -161,6 +162,7 @@
* [Largest Power](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/largest_power.cpp)
* [Lcm Sum](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/lcm_sum.cpp)
* [Least Common Multiple](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/least_common_multiple.cpp)
* [Linear Recurrence Matrix](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/linear_recurrence_matrix.cpp)
* [Magic Number](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/magic_number.cpp)
* [Miller Rabin](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/miller_rabin.cpp)
* [Modular Division](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/modular_division.cpp)

View File

@ -3,6 +3,7 @@
[![Gitpod Ready-to-Code](https://img.shields.io/badge/Gitpod-Ready--to--Code-blue?logo=gitpod)](https://gitpod.io/#https://github.com/TheAlgorithms/C-Plus-Plus)
[![Language grade: C/C++](https://img.shields.io/lgtm/grade/cpp/g/TheAlgorithms/C-Plus-Plus.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/TheAlgorithms/C-Plus-Plus/context:cpp)
[![CodeQL CI](https://github.com/TheAlgorithms/C-Plus-Plus/actions/workflows/codeql_analysis.yml/badge.svg)](https://github.com/TheAlgorithms/C-Plus-Plus/actions/workflows/codeql_analysis.yml)
[![Gitter chat](https://img.shields.io/badge/Chat-Gitter-ff69b4.svg?label=Chat&logo=gitter&style=flat-square)](https://gitter.im/TheAlgorithms)
[![contributions welcome](https://img.shields.io/static/v1.svg?label=Contributions&message=Welcome&color=0059b3&style=flat-square)](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/CONTRIBUTING.md)
![GitHub repo size](https://img.shields.io/github/repo-size/TheAlgorithms/C-Plus-Plus?color=red&style=flat-square)
@ -11,7 +12,6 @@
[![Income](https://img.shields.io/liberapay/receives/TheAlgorithms.svg?logo=liberapay)](https://liberapay.com/TheAlgorithms)
[![Donate](https://liberapay.com/assets/widgets/donate.svg)](https://liberapay.com/TheAlgorithms/donate)
## Overview
The repository is a collection of open-source implementation of a variety of algorithms implemented in C++ and licensed under [MIT License](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/LICENSE). The algorithms span a variety of topics from computer science, mathematics and statistics, data science, machine learning, engineering, etc.. The implementations and the associated documentation are meant to provide a learning resource for educators and students. Hence, one may find more than one implementation for the same objective but using a different algorithm strategies and optimizations.

View File

@ -0,0 +1,345 @@
/**
* @file
* @author [Venkata Bharath](https://github.com/bharath000)
* @brief Implementation of [Trie](https://en.wikipedia.org/wiki/Trie) data
* structure using HashMap for different characters and method for predicting
* words based on prefix.
* @details The Trie data structure is implemented using unordered map to use
* memory optimally, predict_words method is developed to recommend words based
* on a given prefix along with other methods insert, delete, search, startwith
* in trie.
* @see trie_modern.cpp for difference
*/
#include <cassert> /// for assert
#include <iostream> /// for IO operations
#include <memory> /// for std::shared_ptr
#include <stack> /// for std::stack
#include <unordered_map> /// for std::unordered_map
#include <vector> /// for std::vector
/**
* @namespace data_structures
* @brief Data structures algorithms
*/
namespace data_structures {
/**
* @namespace trie_using_hashmap
* @brief Functions for [Trie](https://en.wikipedia.org/wiki/Trie) data
* structure using hashmap implementation
*/
namespace trie_using_hashmap {
/**
* @brief Trie class, implementation of trie using hashmap in each trie node
* for all the characters of char16_t(UTF-16)type with methods to insert,
* delete, search, start with and to recommend words based on a given
* prefix.
*/
class Trie {
private:
/**
* @brief struct representing a trie node.
*/
struct Node {
std::unordered_map<char16_t, std::shared_ptr<Node>>
children; ///< unordered map with key type char16_t and value is a
///< shared pointer type of Node
bool word_end = false; ///< boolean variable to represent the node end
};
std::shared_ptr<Node> root_node =
std::make_shared<Node>(); ///< declaring root node of trie
public:
///< Constructor
Trie() = default;
/**
* @brief insert the string into the trie
* @param word string to insert in the trie
*/
void insert(const std::string& word) {
std::shared_ptr<Node> curr = root_node;
for (char ch : word) {
if (curr->children.find(ch) == curr->children.end()) {
curr->children[ch] = std::make_shared<Node>();
}
curr = curr->children[ch];
}
if (!curr->word_end && curr != root_node) {
curr->word_end = true;
}
}
/**
* @brief search a word/string inside the trie
* @param word string to search for
* @returns `true` if found
* @returns `false` if not found
*/
bool search(const std::string& word) {
std::shared_ptr<Node> curr = root_node;
for (char ch : word) {
if (curr->children.find(ch) == curr->children.end()) {
return false;
}
curr = curr->children[ch];
if (!curr) {
return false;
}
}
if (curr->word_end) {
return true;
} else {
return false;
}
}
/**
* @brief search a word/string that starts with a given prefix
* @param prefix string to search for
* @returns `true` if found
* @returns `false` if not found
*/
bool startwith(const std::string& prefix) {
std::shared_ptr<Node> curr = root_node;
for (char ch : prefix) {
if (curr->children.find(ch) == curr->children.end()) {
return false;
}
curr = curr->children[ch];
}
return true;
}
/**
* @brief delete a word/string from a trie
* @param word string to delete from trie
*/
void delete_word(std::string word) {
std::shared_ptr<Node> curr = root_node;
std::stack<std::shared_ptr<Node>> nodes;
int cnt = 0;
for (char ch : word) {
if (curr->children.find(ch) == curr->children.end()) {
return;
}
if (curr->word_end) {
cnt++;
}
nodes.push(curr->children[ch]);
curr = curr->children[ch];
}
// Delete only when it's a word, and it has children after
// or prefix in the line
if (nodes.top()->word_end) {
nodes.top()->word_end = false;
}
// Delete only when it has no children after
// and also no prefix in the line
while (!(nodes.top()->word_end) && nodes.top()->children.empty()) {
nodes.pop();
nodes.top()->children.erase(word.back());
word.pop_back();
}
}
/**
* @brief helper function to predict/recommend words that starts with a
* given prefix from the end of prefix's node iterate through all the child
* nodes by recursively appending all the possible words below the trie
* @param prefix string to recommend the words
* @param element node at the end of the given prefix
* @param results list to store the all possible words
* @returns list of recommended words
*/
std::vector<std::string> get_all_words(std::vector<std::string> results,
const std::shared_ptr<Node>& element,
std::string prefix) {
if (element->word_end) {
results.push_back(prefix);
}
if (element->children.empty()) {
return results;
}
for (auto const& x : element->children) {
std::string key = "";
key = x.first;
prefix += key;
results =
get_all_words(results, element->children[x.first], prefix);
prefix.pop_back();
}
return results;
}
/**
* @brief predict/recommend a word that starts with a given prefix
* @param prefix string to search for
* @returns list of recommended words
*/
std::vector<std::string> predict_words(const std::string& prefix) {
std::vector<std::string> result;
std::shared_ptr<Node> curr = root_node;
// traversing until the end of the given prefix in trie
for (char ch : prefix) {
if (curr->children.find(ch) == curr->children.end()) {
return result;
}
curr = curr->children[ch];
}
// if the given prefix is the only word without children
if (curr->word_end && curr->children.empty()) {
result.push_back(prefix);
return result;
}
result = get_all_words(
result, curr,
prefix); ///< iteratively and recursively get the recommended words
return result;
}
};
} // namespace trie_using_hashmap
} // namespace data_structures
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
data_structures::trie_using_hashmap::Trie obj;
// Inserting data into trie using the insert
// method and testing it with search method
obj.insert("app");
obj.insert("abscond");
obj.insert("about");
obj.insert("apps");
obj.insert("apen");
obj.insert("apples");
obj.insert("apple");
obj.insert("approach");
obj.insert("bus");
obj.insert("buses");
obj.insert("Apple");
obj.insert("Bounce");
assert(!obj.search("appy"));
std::cout << "appy is not a word in trie" << std::endl;
assert(!obj.search("car"));
std::cout << "car is not a word in trie" << std::endl;
assert(obj.search("app"));
assert(obj.search("apple"));
assert(obj.search("apples"));
assert(obj.search("apps"));
assert(obj.search("apen"));
assert(obj.search("approach"));
assert(obj.search("about"));
assert(obj.search("abscond"));
assert(obj.search("bus"));
assert(obj.search("buses"));
assert(obj.search("Bounce"));
assert(obj.search("Apple"));
std::cout << "All the Inserted words are present in the trie" << std::endl;
// test for startwith prefix method
assert(!obj.startwith("approachs"));
assert(obj.startwith("approach"));
assert(obj.startwith("about"));
assert(!obj.startwith("appy"));
assert(obj.startwith("abscond"));
assert(obj.startwith("bus"));
assert(obj.startwith("buses"));
assert(obj.startwith("Bounce"));
assert(obj.startwith("Apple"));
assert(obj.startwith("abs"));
assert(obj.startwith("b"));
assert(obj.startwith("bus"));
assert(obj.startwith("Bo"));
assert(obj.startwith("A"));
assert(!obj.startwith("Ca"));
assert(!obj.startwith("C"));
std::cout << "All the tests passed for startwith method" << std::endl;
// test for predict_words/recommendation of words based on a given prefix
std::vector<std::string> pred_words = obj.predict_words("a");
for (const std::string& str : obj.predict_words("a")) {
std::cout << str << std::endl;
}
assert(pred_words.size() == 8);
std::cout << "Returned all words that start with prefix a " << std::endl;
pred_words = obj.predict_words("app");
for (const std::string& str : pred_words) {
std::cout << str << std::endl;
}
assert(pred_words.size() == 5);
std::cout << "Returned all words that start with prefix app " << std::endl;
pred_words = obj.predict_words("A");
for (const std::string& str : pred_words) {
std::cout << str << std::endl;
}
assert(pred_words.size() == 1);
std::cout << "Returned all words that start with prefix A " << std::endl;
pred_words = obj.predict_words("bu");
for (const std::string& str : pred_words) {
std::cout << str << std::endl;
}
assert(pred_words.size() == 2);
std::cout << "Returned all words that start with prefix bu " << std::endl;
// tests for delete method
obj.delete_word("app");
assert(!obj.search("app"));
std::cout << "word app is deleted sucessful" << std::endl;
pred_words = obj.predict_words("app");
for (const std::string& str : pred_words) {
std::cout << str << std::endl;
}
assert(pred_words.size() == 4);
std::cout << "app is deleted sucessful" << std::endl;
// test case for Chinese language
obj.insert("苹果");
assert(obj.startwith(""));
pred_words = obj.predict_words("h");
assert(pred_words.size() == 0);
std::cout << "No word starts with prefix h in trie" << std::endl;
std::cout << "All tests passed" << std::endl;
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementaions
return 0;
}

View File

@ -0,0 +1,372 @@
/**
* @brief Evaluate recurrence relation using [matrix
* exponentiation](https://www.hackerearth.com/practice/notes/matrix-exponentiation-1/).
* @details
* Given a recurrence relation; evaluate the value of nth term.
* For e.g., For fibonacci series, recurrence series is `f(n) = f(n-1) + f(n-2)`
* where `f(0) = 0` and `f(1) = 1`.
* Note that the method used only demonstrates
* recurrence relation with one variable (n), unlike `nCr` problem, since it has
* two (n, r)
*
* ### Algorithm
* This problem can be solved using matrix exponentiation method.
* @see here for simple [number exponentiation
* algorithm](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/modular_exponentiation.cpp)
* or [explaination
* here](https://en.wikipedia.org/wiki/Exponentiation_by_squaring).
* @author [Ashish Daulatabad](https://github.com/AshishYUO)
*/
#include <cassert> /// for assert
#include <iostream> /// for IO operations
#include <vector> /// for std::vector STL
/**
* @namespace math
* @brief Mathematical algorithms
*/
namespace math {
/**
* @namespace linear_recurrence_matrix
* @brief Functions for [Linear Recurrence
* Matrix](https://www.hackerearth.com/practice/notes/matrix-exponentiation-1/)
* implementation.
*/
namespace linear_recurrence_matrix {
/**
* @brief Implementation of matrix multiplication
* @details Multiplies matrix A and B, given total columns in A are equal to
* total given rows in column B
* @tparam T template type for integer as well as floating values, default is
* long long int
* @param _mat_a first matrix of size n * m
* @param _mat_b second matrix of size m * k
* @returns `_mat_c` resultant matrix of size n * k
* Complexity: `O(n*m*k)`
* @note The complexity in this case will be O(n^3) due to the nature of the
* problem. We'll be multiplying the matrix with itself most of the time.
*/
template <typename T = int64_t>
std::vector<std::vector<T>> matrix_multiplication(
const std::vector<std::vector<T>>& _mat_a,
const std::vector<std::vector<T>>& _mat_b, const int64_t mod = 1000000007) {
// assert that columns in `_mat_a` and rows in `_mat_b` are equal
assert(_mat_a[0].size() == _mat_b.size());
std::vector<std::vector<T>> _mat_c(_mat_a.size(),
std::vector<T>(_mat_b[0].size(), 0));
/**
* Actual matrix multiplication.
*/
for (uint32_t i = 0; i < _mat_a.size(); ++i) {
for (uint32_t j = 0; j < _mat_b[0].size(); ++j) {
for (uint32_t k = 0; k < _mat_b.size(); ++k) {
_mat_c[i][j] =
(_mat_c[i][j] % mod +
(_mat_a[i][k] % mod * _mat_b[k][j] % mod) % mod) %
mod;
}
}
}
return _mat_c;
}
/**
* @brief Returns whether matrix `mat` is a [zero
* matrix.](https://en.wikipedia.org/wiki/Zero_matrix)
* @tparam T template type for integer as well as floating values, default is
* long long int
* @param _mat A matrix
* @returns true if it is a zero matrix else false
*/
template <typename T = int64_t>
bool is_zero_matrix(const std::vector<std::vector<T>>& _mat) {
for (uint32_t i = 0; i < _mat.size(); ++i) {
for (uint32_t j = 0; j < _mat[i].size(); ++j) {
if (_mat[i][j] != 0) {
return false;
}
}
}
return true;
}
/**
* @brief Implementation of Matrix exponentiation
* @details returns the matrix exponentiation `(B^n)` in `k^3 * O(log2(power))`
* time, where `k` is the size of matrix (k by k).
* @tparam T template type for integer as well as floating values, default is
* long long int
* @param _mat matrix for exponentiation
* @param power the exponent value
* @returns the matrix _mat to the power `power (_mat^power)`
*/
template <typename T = int64_t>
std::vector<std::vector<T>> matrix_exponentiation(
std::vector<std::vector<T>> _mat, uint64_t power,
const int64_t mod = 1000000007) {
/**
* Initializing answer as identity matrix. For simple binary
* exponentiation reference, [see
* here](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/modular_exponentiation.cpp)
*/
if (is_zero_matrix(_mat)) {
return _mat;
}
std::vector<std::vector<T>> _mat_answer(_mat.size(),
std::vector<T>(_mat.size(), 0));
for (uint32_t i = 0; i < _mat.size(); ++i) {
_mat_answer[i][i] = 1;
}
// exponentiation algorithm here.
while (power > 0) {
if (power & 1) {
_mat_answer = matrix_multiplication(_mat_answer, _mat, mod);
}
power >>= 1;
_mat = matrix_multiplication(_mat, _mat, mod);
}
return _mat_answer;
}
/**
* @brief Implementation of nth recurrence series.
* @details Returns the nth term in the recurrence series.
* Note that the function assumes definition of base cases from `n = 0`
* (e.g., for fibonacci, `f(0)` has a defined value `0`)
* @tparam T template type for integer as well as floating values, default is
* long long int
* @param _mat [square matrix](https://en.m.wikipedia.org/wiki/Square_matrix)
* that evaluates the nth term using exponentiation
* @param _base_cases 2D array of dimension `1*n` containing values which are
* defined for some n (e.g., for fibonacci, `f(0)` and `f(1)` are defined, and
* `f(n)` where `n > 1` is evaluated on previous two values)
* @param nth_term the nth term of recurrence relation
* @param constant_or_sum_included whether the recurrence relation has a
* constant value or is evaluating sum of first n terms of the recurrence.
* @returns the nth term of the recurrence relation in `O(k^3. log(n))`, where k
* is number of rows and columns in `_mat` and `n` is the value of `nth_term`
* If constant_or_sum_included is true, returns the sum of first n terms in
* recurrence series
*/
template <typename T = int64_t>
T get_nth_term_of_recurrence_series(
const std::vector<std::vector<T>>& _mat,
const std::vector<std::vector<T>>& _base_cases, uint64_t nth_term,
bool constant_or_sum_included = false) {
assert(_mat.size() == _base_cases.back().size());
/**
* If nth term is a base case, then return base case directly.
*/
if (nth_term < _base_cases.back().size() - constant_or_sum_included) {
return _base_cases.back()[nth_term - constant_or_sum_included];
} else {
/**
* Else evaluate the expression, so multiplying _mat to itself (n -
* base_cases.length + 1 + constant_or_sum_included) times.
*/
std::vector<std::vector<T>> _res_matrix =
matrix_exponentiation(_mat, nth_term - _base_cases.back().size() +
1 + constant_or_sum_included);
/**
* After matrix exponentiation, multiply with the base case to evaluate
* the answer. The answer is always at the end of the array.
*/
std::vector<std::vector<T>> _res =
matrix_multiplication(_base_cases, _res_matrix);
return _res.back().back();
}
}
} // namespace linear_recurrence_matrix
} // namespace math
/**
* @brief Self test-implementations
* @returns void
*/
static void test() {
/*
* Example 1: [Fibonacci
* series](https://en.wikipedia.org/wiki/Fibonacci_number);
*
* [fn-2 fn-1] [0 1] == [fn-1 (fn-2 + fn-1)] => [fn-1 fn]
* [1 1]
*
* Let A = [fn-2 fn-1], and B = [0 1]
* [1 1],
*
* Since, A.B....(n-1 times) = [fn-1 fn]
* we can multiply B with itself n-1 times to obtain the required value
*/
std::vector<std::vector<int64_t>> fibonacci_matrix = {{0, 1}, {1, 1}},
fib_base_case = {{0, 1}};
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
fibonacci_matrix, fib_base_case, 11) == 89LL);
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
fibonacci_matrix, fib_base_case, 39) == 63245986LL);
/*
* Example 2: [Tribonacci series](https://oeis.org/A000073)
* [0 0 1]
* [fn-3 fn-2 fn-1] [1 0 1] = [(fn-2) (fn-1) (fn-3 + fn-2 + fn-1)]
* [0 1 1]
* => [fn-2 fn-1 fn]
*
* [0 0 1]
* Let A = [fn-3 fn-2 fn-1], and B = [1 0 1]
* [0 1 1]
*
* Since, A.B....(n-2 times) = [fn-2 fn-1 fn]
* we will have multiply B with itself n-2 times to obtain the required
* value ()
*/
std::vector<std::vector<int64_t>> tribonacci = {{0, 0, 1},
{1, 0, 1},
{0, 1, 1}},
trib_base_case = {
{0, 0, 1}}; // f0 = 0, f1 = 0, f2 = 1
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
tribonacci, trib_base_case, 11) == 149LL);
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
tribonacci, trib_base_case, 36) == 615693474LL);
/*
* Example 3: [Pell numbers](https://oeis.org/A000129)
* `f(n) = 2* f(n-1) + f(n-2); f(0) = f(1) = 2`
*
* [fn-2 fn-1] [0 1] = [(fn-1) fn-2 + 2*fn-1)]
* [1 2]
* => [fn-1 fn]
*
* Let A = [fn-2 fn-1], and B = [0 1]
* [1 2]
*/
std::vector<std::vector<int64_t>> pell_recurrence = {{0, 1}, {1, 2}},
pell_base_case = {
{2, 2}}; // `f0 = 2, f1 = 2`
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
pell_recurrence, pell_base_case, 15) == 551614LL);
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
pell_recurrence, pell_base_case, 23) == 636562078LL);
/*
* Example 4: Custom recurrence relation:
* Now the recurrence is of the form `a*f(n-1) + b*(fn-2) + ... + c`
* where `c` is the constant
* `f(n) = 2* f(n-1) + f(n-2) + 7; f(0) = f(1) = 2, c = 7`
*
* [1 0 1]
* [7, fn-2, fn-1] [0 0 1]
* [0 1 2]
* = [7, (fn-1), fn-2 + 2*fn-1) + 7]
*
* => [7, fn-1, fn]
* :: Series will be 2, 2, 13, 35, 90, 222, 541, 1311, 3170, 7658, 18493,
* 44651, 107802, 260262, 628333, 1516935, 362210, 8841362, 21344941,
* 51531251
*
* Let A = [7, fn-2, fn-1], and B = [1 0 1]
* [0 0 1]
* [0 1 2]
*/
std::vector<std::vector<int64_t>>
custom_recurrence = {{1, 0, 1}, {0, 0, 1}, {0, 1, 2}},
custom_base_case = {{7, 2, 2}}; // `c = 7, f0 = 2, f1 = 2`
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
custom_recurrence, custom_base_case, 10, 1) == 18493LL);
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
custom_recurrence, custom_base_case, 19, 1) == 51531251LL);
/*
* Example 5: Sum fibonacci sequence
* The following matrix evaluates the sum of first n fibonacci terms in
* O(27. log2(n)) time.
* `f(n) = f(n-1) + f(n-2); f(0) = 0, f(1) = 1`
*
* [1 0 0]
* [s(f, n-1), fn-2, fn-1] [1 0 1]
* [1 1 1]
* => [(s(f, n-1)+f(n-2)+f(n-1)), (fn-1), f(n-2)+f(n-1)]
*
* => [s(f, n-1)+f(n), fn-1, fn]
*
* => [s(f, n), fn-1, fn]
*
* Sum of first 20 fibonacci series:
* 0, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, 1596, 2583,
* 4180, 6764
* f0 f1 s(f,1)
* Let A = [0 1 1], and B = [0 1 1]
* [1 1 1]
* [0 0 1]
*/
std::vector<std::vector<int64_t>> sum_fibo_recurrence = {{0, 1, 1},
{1, 1, 1},
{0, 0, 1}},
sum_fibo_base_case = {
{0, 1, 1}}; // `f0 = 0, f1 = 1`
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
sum_fibo_recurrence, sum_fibo_base_case, 13, 1) == 609LL);
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
sum_fibo_recurrence, sum_fibo_base_case, 16, 1) == 2583LL);
/*
* Example 6: [Tribonacci sum series](https://oeis.org/A000073)
* [0 0 1 1]
* [fn-3 fn-2 fn-1 s(f, n-1)] [1 0 1 1]
* [0 1 1 1]
* [0 0 0 1]
*
* = [fn-2, fn-1, fn-3 + fn-2 + fn-1, (fn-3 + fn-2 + fn-1 + s(f, n-1))]
*
* => [fn-2, fn-1, fn, fn + s(f, n-1)]
*
* => [fn-2, fn-1, fn, s(f, n)]
*
* Sum of the series is: 0, 0, 1, 2, 4, 8, 15, 28, 52, 96, 177, 326, 600,
* 1104, 2031, 3736, 6872, 12640, 23249, 42762
*
* Let A = [fn-3 fn-2 fn-1 s(f, n-1)], and
* [0 0 1 1]
* B = [1 0 1 1]
* [0 1 1 1]
* [0 0 0 1]
*
* Since, A.B....(n-2 times) = [fn-2 fn-1 fn]
* we will have multiply B with itself n-2 times to obtain the required
* value
*/
std::vector<std::vector<int64_t>> tribonacci_sum = {{0, 0, 1, 1},
{1, 0, 1, 1},
{0, 1, 1, 1},
{0, 0, 0, 1}},
trib_sum_base_case = {{0, 0, 1, 1}};
// `f0 = 0, f1 = 0, f2 = 1, s = 1`
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
tribonacci_sum, trib_sum_base_case, 18, 1) == 23249LL);
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
tribonacci_sum, trib_sum_base_case, 19, 1) == 42762LL);
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
return 0;
}