Merge pull request #44 from arpanjain97/master

Thanks for contributing!
This commit is contained in:
Christian Bender 2018-01-15 15:37:23 +01:00 committed by GitHub
commit 87e79e916c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 329 additions and 0 deletions

View File

@ -0,0 +1,116 @@
#include<iostream>
#include<limits.h>
using namespace std;
//Wrapper class for storing an edge
class Edge{
public: int src,dst,weight;
};
//Wrapper class for storing a graph
class Graph{
public:
int vertexNum,edgeNum;
Edge* edges;
//Constructs a graph with V vertices and E edges
Graph(int V,int E){
this->vertexNum = V;
this->edgeNum = E;
this->edges =(Edge*) malloc(E * sizeof(Edge));
}
//Adds the given edge to the graph
void addEdge(int src, int dst, int weight){
static int edgeInd = 0;
if(edgeInd < this->edgeNum){
Edge newEdge;
newEdge.src = src;
newEdge.dst = dst;
newEdge.weight = weight;
this->edges[edgeInd++] = newEdge;
}
}
};
//Utility function to print distances
void print(int dist[], int V){
cout<<"\nVertex Distance"<<endl;
for(int i = 0; i < V; i++){
if( dist[i] != INT_MAX)
cout<<i<<"\t"<<dist[i]<<endl;
else
cout<<i<<"\tINF"<<endl;
}
}
//The main function that finds the shortest path from given source
//to all other vertices using Bellman-Ford.It also detects negative
//weight cycle
void BellmanFord(Graph graph, int src){
int V = graph.vertexNum;
int E = graph.edgeNum;
int dist[V];
//Initialize distances array as INF for all except source
//Intialize source as zero
for(int i=0; i<V; i++)
dist[i] = INT_MAX;
dist[src] = 0;
//Calculate shortest path distance from source to all edges
//A path can contain maximum (|V|-1) edges
for(int i=0; i<=V-1; i++)
for(int j = 0; j<E; j++){
int u = graph.edges[j].src;
int v = graph.edges[j].dst;
int w = graph.edges[j].weight;
if(dist[u]!=INT_MAX && dist[u] + w < dist[v])
dist[v] = dist[u] + w;
}
//Iterate inner loop once more to check for negative cycle
for(int j = 0; j<E; j++){
int u = graph.edges[j].src;
int v = graph.edges[j].dst;
int w = graph.edges[j].weight;
if(dist[u]!=INT_MAX && dist[u] + w < dist[v]){
cout<<"Graph contains negative weight cycle. Hence, shortest distance not guaranteed."<<endl;
return;
}
}
print(dist, V);
return;
}
//Driver Function
int main(){
int V,E,gsrc;
int src,dst,weight;
cout<<"Enter number of vertices: ";
cin>>V;
cout<<"Enter number of edges: ";
cin>>E;
Graph G(V,E);
for(int i=0; i<E; i++){
cout<<"\nEdge "<<i+1<<"\nEnter source: ";
cin>>src;
cout<<"Enter destination: ";
cin>>dst;
cout<<"Enter weight: ";
cin>>weight;
G.addEdge(src, dst, weight);
}
cout<<"\nEnter source: ";
cin>>gsrc;
BellmanFord(G,gsrc);
return 0;
}

View File

@ -0,0 +1,106 @@
#include<iostream>
#include<limits.h>
#include<string.h>
using namespace std;
//Wrapper class for storing a graph
class Graph{
public:
int vertexNum;
int** edges;
//Constructs a graph with V vertices and E edges
Graph(int V){
this->vertexNum = V;
this->edges =(int**) malloc(V * sizeof(int*));
for(int i=0; i<V; i++){
this->edges[i] = (int*) malloc(V * sizeof(int));
for(int j=0; j<V; j++)
this->edges[i][j] = INT_MAX;
this->edges[i][i] = 0;
}
}
//Adds the given edge to the graph
void addEdge(int src, int dst, int weight){
this->edges[src][dst] = weight;
}
};
//Utility function to print distances
void print(int dist[], int V){
cout<<"\nThe Distance matrix for Floyd - Warshall"<<endl;
for(int i = 0; i < V; i++){
for(int j=0; j<V; j++){
if(dist[i*V+j] != INT_MAX)
cout<<dist[i*V+j]<<"\t";
else
cout<<"INF"<<"\t";
}
cout<<endl;
}
}
//The main function that finds the shortest path from a vertex
//to all other vertices using Floyd-Warshall Algorithm.
void FloydWarshall(Graph graph){
int V = graph.vertexNum;
int dist[V][V];
//Initialise distance array
for(int i=0; i<V; i++)
for(int j=0; j<V; j++)
dist[i][j] = graph.edges[i][j];
//Calculate distances
for(int k=0; k<V; k++)
//Choose an intermediate vertex
for(int i=0; i<V; i++)
//Choose a source vertex for given intermediate
for(int j=0; j<V; j++)
//Choose a destination vertex for above source vertex
if(dist[i][k] != INT_MAX && dist[k][j] != INT_MAX && dist[i][k] + dist[k][j] < dist[i][j])
//If the distance through intermediate vertex is less than direct edge then update value in distance array
dist[i][j] = dist[i][k] + dist[k][j];
//Convert 2d array to 1d array for print
int dist1d[V*V];
for(int i=0; i<V; i++)
for(int j=0; j<V; j++)
dist1d[i*V+j] = dist[i][j];
print(dist1d,V);
}
//Driver Function
int main(){
int V,E;
int src,dst,weight;
cout<<"Enter number of vertices: ";
cin>>V;
cout<<"Enter number of edges: ";
cin>>E;
Graph G(V);
for(int i=0; i<E; i++){
cout<<"\nEdge "<<i+1<<"\nEnter source: ";
cin>>src;
cout<<"Enter destination: ";
cin>>dst;
cout<<"Enter weight: ";
cin>>weight;
G.addEdge(src, dst, weight);
}
FloydWarshall(G);
return 0;
}

View File

@ -0,0 +1,107 @@
#include<iostream>
#include<limits.h>
using namespace std;
//Wrapper class for storing a graph
class Graph{
public:
int vertexNum;
int** edges;
//Constructs a graph with V vertices and E edges
Graph(int V){
this->vertexNum = V;
this->edges =(int**) malloc(V * sizeof(int*));
for(int i=0; i<V; i++)
this->edges[i] = (int*) calloc(V, sizeof(int));
}
//Adds the given edge to the graph
void addEdge(int src, int dst, int weight){
this->edges[src][dst] = weight;
}
};
//Utility function to find minimum distance vertex in mdist
int minDistance(int mdist[], bool vset[], int V){
int minVal = INT_MAX, minInd;
for(int i=0; i<V;i++)
if(vset[i] == false && mdist[i] < minVal){
minVal = mdist[i];
minInd = i;
}
return minInd;
}
//Utility function to print distances
void print(int dist[], int V){
cout<<"\nVertex Distance"<<endl;
for(int i = 0; i < V; i++){
if( dist[i] != INT_MAX)
cout<<i<<"\t"<<dist[i]<<endl;
else
cout<<i<<"\tINF"<<endl;
}
}
//The main function that finds the shortest path from given source
//to all other vertices using Dijkstra's Algorithm.It doesn't work on negative
//weights
void Dijkstra(Graph graph, int src){
int V = graph.vertexNum;
int mdist[V]; //Stores updated distances to vertex
bool vset[V]; // vset[i] is true if the vertex i included
// in the shortest path tree
//Initialise mdist and vset. Set distance of source as zero
for(int i=0; i<V; i++)
mdist[i] = INT_MAX, vset[i] = false;
mdist[src] = 0;
//iterate to find shortest path
for(int count = 0; count<V-1; count++){
int u = minDistance(mdist,vset,V);
vset[u] = true;
for(int v=0; v<V; v++){
if(!vset[v] && graph.edges[u][v] && mdist[u] + graph.edges[u][v] < mdist[v])
mdist[v] = mdist[u] + graph.edges[u][v];
}
}
print(mdist, V);
return;
}
//Driver Function
int main(){
int V,E,gsrc;
int src,dst,weight;
cout<<"Enter number of vertices: ";
cin>>V;
cout<<"Enter number of edges: ";
cin>>E;
Graph G(V);
for(int i=0; i<E; i++){
cout<<"\nEdge "<<i+1<<"\nEnter source: ";
cin>>src;
cout<<"Enter destination: ";
cin>>dst;
cout<<"Enter weight: ";
cin>>weight;
G.addEdge(src, dst, weight);
}
cout<<"\nEnter source:";
cin>>gsrc;
Dijkstra(G,gsrc);
return 0;
}