mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
feat: Created midpoint integration numerical method (#1785)
* Created composite Simpson's numerical integration method * Created midpoint numerical integration method * Corrections * Midpoint method * Improved Documentation * added namespace numerical_methods * Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * updating DIRECTORY.md * clang-format and clang-tidy fixes forec5e0cce
* Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * clang-format and clang-tidy fixes for7f16cc14
* Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update midpoint_integral_method.cpp * All changes have been applied * clang-format and clang-tidy fixes for6617e060
* Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * clang-format and clang-tidy fixes fora5a50f89
* Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * clang-format and clang-tidy fixes for4c60e180
* Create midpoint_integral_method.cpp * Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * clang-format and clang-tidy fixes for27f76052
* Update midpoint_integral_method.cpp Co-authored-by: ggkogkou <ggkogkou@ggkogkou.gr> Co-authored-by: David Leal <halfpacho@gmail.com> Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
1e8376eedb
commit
8a6f2052e2
@ -229,6 +229,7 @@
|
||||
* [Golden Search Extrema](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/golden_search_extrema.cpp)
|
||||
* [Lu Decompose](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/lu_decompose.cpp)
|
||||
* [Lu Decomposition](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/lu_decomposition.h)
|
||||
* [Midpoint Integral Method](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/midpoint_integral_method.cpp)
|
||||
* [Newton Raphson Method](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/newton_raphson_method.cpp)
|
||||
* [Ode Forward Euler](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/ode_forward_euler.cpp)
|
||||
* [Ode Midpoint Euler](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/ode_midpoint_euler.cpp)
|
||||
|
@ -10,13 +10,14 @@
|
||||
* In this implementation, using a graph in the form of adjacency
|
||||
* list, check whether the given graph is a bipartite or not.
|
||||
*
|
||||
* References used: [GeeksForGeeks](https://www.geeksforgeeks.org/bipartite-graph/)
|
||||
* References used:
|
||||
* [GeeksForGeeks](https://www.geeksforgeeks.org/bipartite-graph/)
|
||||
* @author [tushar2407](https://github.com/tushar2407)
|
||||
*/
|
||||
#include <cassert> /// for assert
|
||||
#include <iostream> /// for IO operations
|
||||
#include <queue> /// for queue data structure
|
||||
#include <vector> /// for vector data structure
|
||||
#include <cassert> /// for assert
|
||||
|
||||
/**
|
||||
* @namespace graph
|
||||
@ -32,32 +33,31 @@ namespace graph {
|
||||
* traversed or not yet
|
||||
* @returns boolean
|
||||
*/
|
||||
bool checkBipartite(
|
||||
const std::vector<std::vector<int64_t>> &graph,
|
||||
int64_t index,
|
||||
std::vector<int64_t> *visited
|
||||
)
|
||||
{
|
||||
bool checkBipartite(const std::vector<std::vector<int64_t>> &graph,
|
||||
int64_t index, std::vector<int64_t> *visited) {
|
||||
std::queue<int64_t> q; ///< stores the neighbouring node indexes in squence
|
||||
/// of being reached
|
||||
q.push(index); /// insert the current node into the queue
|
||||
(*visited)[index] = 1; /// mark the current node as travelled
|
||||
while(q.size())
|
||||
{
|
||||
while (q.size()) {
|
||||
int64_t u = q.front();
|
||||
q.pop();
|
||||
for(uint64_t i=0;i<graph[u].size();i++)
|
||||
{
|
||||
int64_t v = graph[u][i]; ///< stores the neighbour of the current node
|
||||
for (uint64_t i = 0; i < graph[u].size(); i++) {
|
||||
int64_t v =
|
||||
graph[u][i]; ///< stores the neighbour of the current node
|
||||
if (!(*visited)[v]) /// check whether the neighbour node is
|
||||
/// travelled already or not
|
||||
{
|
||||
(*visited)[v] = ((*visited)[u]==1)?-1:1; /// colour the neighbouring node with
|
||||
(*visited)[v] =
|
||||
((*visited)[u] == 1)
|
||||
? -1
|
||||
: 1; /// colour the neighbouring node with
|
||||
/// different colour than the current node
|
||||
q.push(v); /// insert the neighbouring node into the queue
|
||||
}
|
||||
else if((*visited)[v] == (*visited)[u]) /// if both the current node and its neighbour
|
||||
/// has the same state then it is not a bipartite graph
|
||||
} else if ((*visited)[v] ==
|
||||
(*visited)[u]) /// if both the current node and its
|
||||
/// neighbour has the same state then it
|
||||
/// is not a bipartite graph
|
||||
{
|
||||
return false;
|
||||
}
|
||||
@ -72,18 +72,18 @@ bool checkBipartite(
|
||||
* and values in that row signify the nodes it is connected to
|
||||
* @returns booleans
|
||||
*/
|
||||
bool isBipartite(const std::vector<std::vector<int64_t>> &graph)
|
||||
{
|
||||
std::vector<int64_t> visited(graph.size()); ///< stores boolean values
|
||||
/// which signify whether that node had been visited or not
|
||||
bool isBipartite(const std::vector<std::vector<int64_t>> &graph) {
|
||||
std::vector<int64_t> visited(
|
||||
graph.size()); ///< stores boolean values
|
||||
/// which signify whether that node had been visited or
|
||||
/// not
|
||||
|
||||
for(uint64_t i=0;i<graph.size();i++)
|
||||
{
|
||||
for (uint64_t i = 0; i < graph.size(); i++) {
|
||||
if (!visited[i]) /// if the current node is not visited then check
|
||||
/// whether the sub-graph of that node is a bipartite or not
|
||||
{
|
||||
if(!checkBipartite(graph, i, &visited))
|
||||
/// whether the sub-graph of that node is a bipartite
|
||||
/// or not
|
||||
{
|
||||
if (!checkBipartite(graph, i, &visited)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -96,26 +96,18 @@ bool isBipartite(const std::vector<std::vector<int64_t>> &graph)
|
||||
* @brief Self-test implementations
|
||||
* @returns void
|
||||
*/
|
||||
static void test()
|
||||
{
|
||||
std::vector<std::vector<int64_t>> graph = {
|
||||
{1,3},
|
||||
{0,2},
|
||||
{1,3},
|
||||
{0,2}
|
||||
};
|
||||
static void test() {
|
||||
std::vector<std::vector<int64_t>> graph = {{1, 3}, {0, 2}, {1, 3}, {0, 2}};
|
||||
|
||||
assert(graph::isBipartite(graph) == true); /// check whether the above
|
||||
assert(graph::isBipartite(graph) ==
|
||||
true); /// check whether the above
|
||||
/// defined graph is indeed bipartite
|
||||
|
||||
std::vector<std::vector<int64_t>> graph_not_bipartite = {
|
||||
{1,2,3},
|
||||
{0,2},
|
||||
{0,1,3},
|
||||
{0,2}
|
||||
};
|
||||
{1, 2, 3}, {0, 2}, {0, 1, 3}, {0, 2}};
|
||||
|
||||
assert(graph::isBipartite(graph_not_bipartite) == false); /// check whether
|
||||
assert(graph::isBipartite(graph_not_bipartite) ==
|
||||
false); /// check whether
|
||||
/// the above defined graph is indeed bipartite
|
||||
std::cout << "All tests have successfully passed!\n";
|
||||
}
|
||||
@ -127,8 +119,7 @@ static void test()
|
||||
* graph is bipartite or not.
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main()
|
||||
{
|
||||
int main() {
|
||||
test(); // run self-test implementations
|
||||
return 0;
|
||||
}
|
||||
|
199
numerical_methods/midpoint_integral_method.cpp
Normal file
199
numerical_methods/midpoint_integral_method.cpp
Normal file
@ -0,0 +1,199 @@
|
||||
/**
|
||||
* @file
|
||||
* @brief A numerical method for easy [approximation of
|
||||
* integrals](https://en.wikipedia.org/wiki/Midpoint_method)
|
||||
* @details The idea is to split the interval into N of intervals and use as
|
||||
* interpolation points the xi for which it applies that xi = x0 + i*h, where h
|
||||
* is a step defined as h = (b-a)/N where a and b are the first and last points
|
||||
* of the interval of the integration [a, b].
|
||||
*
|
||||
* We create a table of the xi and their corresponding f(xi) values and we
|
||||
* evaluate the integral by the formula: I = h * {f(x0+h/2) + f(x1+h/2) + ... +
|
||||
* f(xN-1+h/2)}
|
||||
*
|
||||
* Arguments can be passed as parameters from the command line argv[1] = N,
|
||||
* argv[2] = a, argv[3] = b. In this case if the default values N=16, a=1, b=3
|
||||
* are changed then the tests/assert are disabled.
|
||||
*
|
||||
*
|
||||
* @author [ggkogkou](https://github.com/ggkogkou)
|
||||
*/
|
||||
#include <cassert> /// for assert
|
||||
#include <cmath> /// for math functions
|
||||
#include <cstdint> /// for integer allocation
|
||||
#include <cstdlib> /// for std::atof
|
||||
#include <functional> /// for std::function
|
||||
#include <iostream> /// for IO operations
|
||||
#include <map> /// for std::map container
|
||||
|
||||
/**
|
||||
* @namespace numerical_methods
|
||||
* @brief Numerical algorithms/methods
|
||||
*/
|
||||
namespace numerical_methods {
|
||||
/**
|
||||
* @namespace midpoint_rule
|
||||
* @brief Functions for the [Midpoint
|
||||
* Integral](https://en.wikipedia.org/wiki/Midpoint_method) method
|
||||
* implementation
|
||||
*/
|
||||
namespace midpoint_rule {
|
||||
/**
|
||||
* @fn double midpoint(const std::int32_t N, const double h, const double a,
|
||||
* const std::function<double (double)>& func)
|
||||
* @brief Main function for implementing the Midpoint Integral Method
|
||||
* implementation
|
||||
* @param N is the number of intervals
|
||||
* @param h is the step
|
||||
* @param a is x0
|
||||
* @param func is the function that will be integrated
|
||||
* @returns the result of the integration
|
||||
*/
|
||||
double midpoint(const std::int32_t N, const double h, const double a,
|
||||
const std::function<double(double)>& func) {
|
||||
std::map<int, double>
|
||||
data_table; // Contains the data points, key: i, value: f(xi)
|
||||
double xi = a; // Initialize xi to the starting point x0 = a
|
||||
|
||||
// Create the data table
|
||||
// Loop from x0 to xN-1
|
||||
double temp = NAN;
|
||||
for (std::int32_t i = 0; i < N; i++) {
|
||||
temp = func(xi + h / 2); // find f(xi+h/2)
|
||||
data_table.insert(
|
||||
std::pair<std::int32_t, double>(i, temp)); // add i and f(xi)
|
||||
xi += h; // Get the next point xi for the next iteration
|
||||
}
|
||||
|
||||
// Evaluate the integral.
|
||||
// Remember: {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)}
|
||||
double evaluate_integral = 0;
|
||||
for (std::int32_t i = 0; i < N; i++) evaluate_integral += data_table.at(i);
|
||||
|
||||
// Multiply by the coefficient h
|
||||
evaluate_integral *= h;
|
||||
|
||||
// If the result calculated is nan, then the user has given wrong input
|
||||
// interval.
|
||||
assert(!std::isnan(evaluate_integral) &&
|
||||
"The definite integral can't be evaluated. Check the validity of "
|
||||
"your input.\n");
|
||||
// Else return
|
||||
return evaluate_integral;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief A function f(x) that will be used to test the method
|
||||
* @param x The independent variable xi
|
||||
* @returns the value of the dependent variable yi = f(xi) = sqrt(xi) + ln(xi)
|
||||
*/
|
||||
double f(double x) { return std::sqrt(x) + std::log(x); }
|
||||
/**
|
||||
* @brief A function g(x) that will be used to test the method
|
||||
* @param x The independent variable xi
|
||||
* @returns the value of the dependent variable yi = g(xi) = e^(-xi) * (4 -
|
||||
* xi^2)
|
||||
*/
|
||||
double g(double x) { return std::exp(-x) * (4 - std::pow(x, 2)); }
|
||||
/**
|
||||
* @brief A function k(x) that will be used to test the method
|
||||
* @param x The independent variable xi
|
||||
* @returns the value of the dependent variable yi = k(xi) = sqrt(2*xi^3 + 3)
|
||||
*/
|
||||
double k(double x) { return std::sqrt(2 * std::pow(x, 3) + 3); }
|
||||
/**
|
||||
* @brief A function l(x) that will be used to test the method
|
||||
* @param x The independent variable xi
|
||||
* @returns the value of the dependent variable yi = l(xi) = xi + ln(2*xi + 1)
|
||||
*/
|
||||
double l(double x) { return x + std::log(2 * x + 1); }
|
||||
|
||||
} // namespace midpoint_rule
|
||||
} // namespace numerical_methods
|
||||
|
||||
/**
|
||||
* @brief Self-test implementations
|
||||
* @param N is the number of intervals
|
||||
* @param h is the step
|
||||
* @param a is x0
|
||||
* @param b is the end of the interval
|
||||
* @param used_argv_parameters is 'true' if argv parameters are given and
|
||||
* 'false' if not
|
||||
*/
|
||||
static void test(std::int32_t N, double h, double a, double b,
|
||||
bool used_argv_parameters) {
|
||||
// Call midpoint() for each of the test functions f, g, k, l
|
||||
// Assert with two decimal point precision
|
||||
double result_f = numerical_methods::midpoint_rule::midpoint(
|
||||
N, h, a, numerical_methods::midpoint_rule::f);
|
||||
assert((used_argv_parameters || (result_f >= 4.09 && result_f <= 4.10)) &&
|
||||
"The result of f(x) is wrong");
|
||||
std::cout << "The result of integral f(x) on interval [" << a << ", " << b
|
||||
<< "] is equal to: " << result_f << std::endl;
|
||||
|
||||
double result_g = numerical_methods::midpoint_rule::midpoint(
|
||||
N, h, a, numerical_methods::midpoint_rule::g);
|
||||
assert((used_argv_parameters || (result_g >= 0.27 && result_g <= 0.28)) &&
|
||||
"The result of g(x) is wrong");
|
||||
std::cout << "The result of integral g(x) on interval [" << a << ", " << b
|
||||
<< "] is equal to: " << result_g << std::endl;
|
||||
|
||||
double result_k = numerical_methods::midpoint_rule::midpoint(
|
||||
N, h, a, numerical_methods::midpoint_rule::k);
|
||||
assert((used_argv_parameters || (result_k >= 9.06 && result_k <= 9.07)) &&
|
||||
"The result of k(x) is wrong");
|
||||
std::cout << "The result of integral k(x) on interval [" << a << ", " << b
|
||||
<< "] is equal to: " << result_k << std::endl;
|
||||
|
||||
double result_l = numerical_methods::midpoint_rule::midpoint(
|
||||
N, h, a, numerical_methods::midpoint_rule::l);
|
||||
assert((used_argv_parameters || (result_l >= 7.16 && result_l <= 7.17)) &&
|
||||
"The result of l(x) is wrong");
|
||||
std::cout << "The result of integral l(x) on interval [" << a << ", " << b
|
||||
<< "] is equal to: " << result_l << std::endl;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
* @param argc commandline argument count (ignored)
|
||||
* @param argv commandline array of arguments (ignored)
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main(int argc, char** argv) {
|
||||
std::int32_t N =
|
||||
16; /// Number of intervals to divide the integration interval.
|
||||
/// MUST BE EVEN
|
||||
double a = 1, b = 3; /// Starting and ending point of the integration in
|
||||
/// the real axis
|
||||
double h = NAN; /// Step, calculated by a, b and N
|
||||
|
||||
bool used_argv_parameters =
|
||||
false; // If argv parameters are used then the assert must be omitted
|
||||
// for the test cases
|
||||
|
||||
// Get user input (by the command line parameters or the console after
|
||||
// displaying messages)
|
||||
if (argc == 4) {
|
||||
N = std::atoi(argv[1]);
|
||||
a = std::atof(argv[2]);
|
||||
b = std::atof(argv[3]);
|
||||
// Check if a<b else abort
|
||||
assert(a < b && "a has to be less than b");
|
||||
assert(N > 0 && "N has to be > 0");
|
||||
if (N < 4 || a != 1 || b != 3) {
|
||||
used_argv_parameters = true;
|
||||
}
|
||||
std::cout << "You selected N=" << N << ", a=" << a << ", b=" << b
|
||||
<< std::endl;
|
||||
} else {
|
||||
std::cout << "Default N=" << N << ", a=" << a << ", b=" << b
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
// Find the step
|
||||
h = (b - a) / N;
|
||||
|
||||
test(N, h, a, b, used_argv_parameters); // run self-test implementations
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user