mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
clang-format and clang-tidy fixes for 405d21a5
This commit is contained in:
parent
280cf61e24
commit
91d669a8d2
@ -4,10 +4,10 @@
|
||||
* (IFFT)](https://www.geeksforgeeks.org/python-inverse-fast-fourier-transformation/)
|
||||
* is an algorithm that computes the inverse fourier transform.
|
||||
* @details
|
||||
* This algorithm has an application in use case scenario where a user wants find coefficients of
|
||||
* a function in a short time by just using points generated by DFT.
|
||||
* Time complexity
|
||||
* this algorithm computes the IDFT in O(nlogn) time in comparison to traditional O(n^2).
|
||||
* This algorithm has an application in use case scenario where a user wants
|
||||
* find coefficients of a function in a short time by just using points
|
||||
* generated by DFT. Time complexity this algorithm computes the IDFT in
|
||||
* O(nlogn) time in comparison to traditional O(n^2).
|
||||
* @author [Ameya Chawla](https://github.com/ameyachawlaggsipu)
|
||||
*/
|
||||
|
||||
@ -23,14 +23,15 @@
|
||||
*/
|
||||
namespace numerical_methods {
|
||||
/**
|
||||
* @brief InverseFastFourierTransform is a recursive function which returns list of
|
||||
* complex numbers
|
||||
* @brief InverseFastFourierTransform is a recursive function which returns list
|
||||
* of complex numbers
|
||||
* @param p List of Coefficents in form of complex numbers
|
||||
* @param n Count of elements in list p
|
||||
* @returns p if n==1
|
||||
* @returns y if n!=1
|
||||
*/
|
||||
std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8_t n) {
|
||||
std::complex<double> *InverseFastFourierTransform(std::complex<double> *p,
|
||||
uint8_t n) {
|
||||
if (n == 1) {
|
||||
return p; /// Base Case To return
|
||||
}
|
||||
@ -39,9 +40,9 @@ std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8
|
||||
|
||||
std::complex<double> om = std::complex<double>(
|
||||
cos(2 * pi / n), sin(2 * pi / n)); /// Calculating value of omega
|
||||
|
||||
om.real(om.real()/n); /// One change in comparison with DFT
|
||||
om.imag(om.imag()/n); /// One change in comparison with DFT
|
||||
|
||||
om.real(om.real() / n); /// One change in comparison with DFT
|
||||
om.imag(om.imag() / n); /// One change in comparison with DFT
|
||||
|
||||
auto *pe = new std::complex<double>[n / 2]; /// Coefficients of even power
|
||||
|
||||
@ -52,8 +53,9 @@ std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8
|
||||
if (j % 2 == 0) {
|
||||
pe[k1++] = p[j]; /// Assigning values of even Coefficients
|
||||
|
||||
} else
|
||||
} else {
|
||||
po[k2++] = p[j]; /// Assigning value of odd Coefficients
|
||||
}
|
||||
}
|
||||
|
||||
std::complex<double> *ye =
|
||||
@ -75,12 +77,10 @@ std::complex<double> *InverseFastFourierTransform(std::complex<double> *p, uint8
|
||||
k1++;
|
||||
k2++;
|
||||
}
|
||||
|
||||
if(n!=2){
|
||||
|
||||
|
||||
if (n != 2) {
|
||||
delete[] pe;
|
||||
delete[] po;
|
||||
|
||||
}
|
||||
|
||||
delete[] ye; /// Deleting dynamic array ye
|
||||
@ -118,16 +118,17 @@ static void test() {
|
||||
std::vector<std::complex<double>> r2 = {
|
||||
{1, 0}, {2, 0}, {3, 0}, {4, 0}}; /// True Answer for test case 2
|
||||
|
||||
std::complex<double> *o1 = numerical_methods::InverseFastFourierTransform(t1, n1);
|
||||
|
||||
std::complex<double> *o2 = numerical_methods::InverseFastFourierTransform(t2, n2);
|
||||
std::complex<double> *o1 =
|
||||
numerical_methods::InverseFastFourierTransform(t1, n1);
|
||||
|
||||
std::complex<double> *o2 =
|
||||
numerical_methods::InverseFastFourierTransform(t2, n2);
|
||||
|
||||
for (uint8_t i = 0; i < n1; i++) {
|
||||
assert((r1[i].real() - o1[i].real() < 0.000000000001) &&
|
||||
(r1[i].imag() - o1[i].imag() <
|
||||
0.000000000001)); /// Comparing for both real and imaginary
|
||||
/// values for test case 1
|
||||
|
||||
}
|
||||
|
||||
for (uint8_t i = 0; i < n2; i++) {
|
||||
@ -135,10 +136,8 @@ static void test() {
|
||||
(r2[i].imag() - o2[i].imag() <
|
||||
0.000000000001)); /// Comparing for both real and imaginary
|
||||
/// values for test case 2
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
delete[] t1;
|
||||
delete[] t2;
|
||||
delete[] o1;
|
||||
|
Loading…
Reference in New Issue
Block a user