diff --git a/DIRECTORY.md b/DIRECTORY.md index 740a61647..189d6041b 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -15,7 +15,6 @@ * [Gaussian Elimination](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/computer_oriented_statistical_methods/gaussian_elimination.cpp) * [Newton Raphson Method](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/computer_oriented_statistical_methods/newton_raphson_method.cpp) * [Ordinary Least Squares Regressor](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/computer_oriented_statistical_methods/ordinary_least_squares_regressor.cpp) - * [Secant Method](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/computer_oriented_statistical_methods/secant_method.cpp) * [Successive Approximation](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/computer_oriented_statistical_methods/successive_approximation.cpp) ## Data Structure diff --git a/computer_oriented_statistical_methods/bisection_method.cpp b/computer_oriented_statistical_methods/bisection_method.cpp index 089828c9a..c93c529d2 100644 --- a/computer_oriented_statistical_methods/bisection_method.cpp +++ b/computer_oriented_statistical_methods/bisection_method.cpp @@ -1,25 +1,60 @@ +/** + * \file + * \brief Solve the equation \f$f(x)=0\f$ using [bisection + * method](https://en.wikipedia.org/wiki/Bisection_method) + * + * Given two points \f$a\f$ and \f$b\f$ such that \f$f(a)<0\f$ and + * \f$f(b)>0\f$, then the \f$(i+1)^\text{th}\f$ approximation is given by: \f[ + * x_{i+1} = \frac{a_i+b_i}{2} + * \f] + * For the next iteration, the interval is selected + * as: \f$[a,x]\f$ if \f$x>0\f$ or \f$[x,b]\f$ if \f$x<0\f$. The Process is + * continued till a close enough approximation is achieved. + * + * \see newton_raphson_method.cpp, false_position.cpp, secant_method.cpp + */ #include #include +#include -static float eq(float i) { +#define EPSILON \ + 1e-6 // std::numeric_limits::epsilon() ///< system accuracy limit +#define MAX_ITERATIONS 50000 ///< Maximum number of iterations to check + +/** define \f$f(x)\f$ to find root for + */ +static double eq(double i) { return (std::pow(i, 3) - (4 * i) - 9); // original equation } -int main() { - float a, b, x, z; +/** get the sign of any given number */ +template +int sgn(T val) { + return (T(0) < val) - (val < T(0)); +} - for (int i = 0; i < 100; i++) { - z = eq(i); - if (z >= 0) { - b = i; - a = --i; +/** main function */ +int main() { + double a = -1, b = 1, x, z; + int i; + + // loop to find initial intervals a, b + for (int i = 0; i < MAX_ITERATIONS; i++) { + z = eq(a); + x = eq(b); + if (sgn(z) == sgn(x)) { // same signs, increase interval + b++; + a--; + } else { // if opposite signs, we got our interval break; } } std::cout << "\nFirst initial: " << a; std::cout << "\nSecond initial: " << b; - for (int i = 0; i < 100; i++) { + + // start iterations + for (i = 0; i < MAX_ITERATIONS; i++) { x = (a + b) / 2; z = eq(x); std::cout << "\n\nz: " << z << "\t[" << a << " , " << b @@ -31,10 +66,10 @@ int main() { b = x; } - if (z > 0 && z < 0.0009) // stoping criteria + if (std::abs(z) < EPSILON) // stoping criteria break; } - std::cout << "\n\nRoot: " << x; + std::cout << "\n\nRoot: " << x << "\t\tSteps: " << i << std::endl; return 0; } diff --git a/computer_oriented_statistical_methods/false_position.cpp b/computer_oriented_statistical_methods/false_position.cpp index c5a314508..aebd154bb 100644 --- a/computer_oriented_statistical_methods/false_position.cpp +++ b/computer_oriented_statistical_methods/false_position.cpp @@ -1,19 +1,53 @@ +/** + * \file + * \brief Solve the equation \f$f(x)=0\f$ using [false position + * method](https://en.wikipedia.org/wiki/Regula_falsi), also known as the Secant + * method + * + * Given two points \f$a\f$ and \f$b\f$ such that \f$f(a)<0\f$ and + * \f$f(b)>0\f$, then the \f$(i+1)^\text{th}\f$ approximation is given by: \f[ + * x_{i+1} = \frac{a_i\cdot f(b_i) - b_i\cdot f(a_i)}{f(b_i) - f(a_i)} + * \f] + * For the next iteration, the interval is selected + * as: \f$[a,x]\f$ if \f$x>0\f$ or \f$[x,b]\f$ if \f$x<0\f$. The Process is + * continued till a close enough approximation is achieved. + * + * \see newton_raphson_method.cpp, bisection_method.cpp + */ #include #include #include +#include -static float eq(float i) { - return (pow(i, 3) - (4 * i) - 9); // origial equation +#define EPSILON \ + 1e-6 // std::numeric_limits::epsilon() ///< system accuracy limit +#define MAX_ITERATIONS 50000 ///< Maximum number of iterations to check + +/** define \f$f(x)\f$ to find root for + */ +static double eq(double i) { + return (std::pow(i, 3) - (4 * i) - 9); // origial equation } +/** get the sign of any given number */ +template +int sgn(T val) { + return (T(0) < val) - (val < T(0)); +} + +/** main function */ int main() { - float a, b, z, c, m, n; - system("clear"); - for (int i = 0; i < 100; i++) { - z = eq(i); - if (z >= 0) { - b = i; - a = --i; + double a = -1, b = 1, x, z, m, n, c; + int i; + + // loop to find initial intervals a, b + for (int i = 0; i < MAX_ITERATIONS; i++) { + z = eq(a); + x = eq(b); + if (sgn(z) == sgn(x)) { // same signs, increase interval + b++; + a--; + } else { // if opposite signs, we got our interval break; } } @@ -21,18 +55,20 @@ int main() { std::cout << "\nFirst initial: " << a; std::cout << "\nSecond initial: " << b; - for (int i = 0; i < 100; i++) { - float h, d; + for (i = 0; i < MAX_ITERATIONS; i++) { m = eq(a); n = eq(b); + c = ((a * n) - (b * m)) / (n - m); + a = c; z = eq(c); - if (z > 0 && z < 0.09) { // stoping criteria + + if (std::abs(z) < EPSILON) { // stoping criteria break; } } - std::cout << "\n\nRoot: " << c; + std::cout << "\n\nRoot: " << c << "\t\tSteps: " << i << std::endl; return 0; } diff --git a/computer_oriented_statistical_methods/gaussian_elimination.cpp b/computer_oriented_statistical_methods/gaussian_elimination.cpp index 0b8bb693d..60b5648ec 100644 --- a/computer_oriented_statistical_methods/gaussian_elimination.cpp +++ b/computer_oriented_statistical_methods/gaussian_elimination.cpp @@ -1,17 +1,26 @@ +/** + * \file + * \brief [Gaussian elimination + * method](https://en.wikipedia.org/wiki/Gaussian_elimination) + */ #include +/** Main function */ int main() { int mat_size, i, j, step; std::cout << "Matrix size: "; std::cin >> mat_size; + // create a 2D matrix by dynamic memory allocation double **mat = new double *[mat_size + 1], **x = new double *[mat_size]; for (i = 0; i <= mat_size; i++) { mat[i] = new double[mat_size + 1]; - if (i < mat_size) x[i] = new double[mat_size + 1]; + if (i < mat_size) + x[i] = new double[mat_size + 1]; } + // get the matrix elements from user std::cout << std::endl << "Enter value of the matrix: " << std::endl; for (i = 0; i < mat_size; i++) { for (j = 0; j <= mat_size; j++) { @@ -20,6 +29,7 @@ int main() { } } + // perform Gaussian elimination for (step = 0; step < mat_size - 1; step++) { for (i = step; i < mat_size - 1; i++) { double a = (mat[i + 1][step] / mat[step][step]); @@ -56,7 +66,8 @@ int main() { for (i = 0; i <= mat_size; i++) { delete[] mat[i]; - if (i < mat_size) delete[] x[i]; + if (i < mat_size) + delete[] x[i]; } delete[] mat; delete[] x; diff --git a/computer_oriented_statistical_methods/newton_raphson_method.cpp b/computer_oriented_statistical_methods/newton_raphson_method.cpp index 47d276490..318363a39 100644 --- a/computer_oriented_statistical_methods/newton_raphson_method.cpp +++ b/computer_oriented_statistical_methods/newton_raphson_method.cpp @@ -1,42 +1,57 @@ +/** + * \file + * \brief Solve the equation \f$f(x)=0\f$ using [Newton-Raphson + * method](https://en.wikipedia.org/wiki/Newton%27s_method) + * + * The \f$(i+1)^\text{th}\f$ approximation is given by: + * \f[ + * x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} + * \f] + * + * \see bisection_method.cpp, false_position.cpp + */ #include +#include #include +#include -static float eq(float i) { +#define EPSILON \ + 1e-6 // std::numeric_limits::epsilon() ///< system accuracy limit +#define MAX_ITERATIONS 50000 ///< Maximum number of iterations to check + +/** define \f$f(x)\f$ to find root for + */ +static double eq(double i) { return (std::pow(i, 3) - (4 * i) - 9); // original equation } -static float eq_der(float i) { +/** define the derivative function \f$f'(x)\f$ + */ +static double eq_der(double i) { return ((3 * std::pow(i, 2)) - 4); // derivative of equation } +/** Main function */ int main() { - float a, b, z, c, m, n; + std::srand(std::time(nullptr)); // initialize randomizer - for (int i = 0; i < 100; i++) { - z = eq(i); - if (z >= 0) { - b = i; - a = --i; - break; - } - } + double z, c = std::rand() % 100, m, n; + int i; - std::cout << "\nFirst initial: " << a; - std::cout << "\nSecond initial: " << b; - c = (a + b) / 2; + std::cout << "\nInitial approximation: " << c; - for (int i = 0; i < 100; i++) { - float h; + // start iterations + for (i = 0; i < MAX_ITERATIONS; i++) { m = eq(c); n = eq_der(c); z = c - (m / n); c = z; - if (m > 0 && m < 0.009) // stoping criteria + if (std::abs(m) < EPSILON) // stoping criteria break; } - std::cout << "\n\nRoot: " << z << std::endl; + std::cout << "\n\nRoot: " << z << "\t\tSteps: " << i << std::endl; return 0; } diff --git a/computer_oriented_statistical_methods/ordinary_least_squares_regressor.cpp b/computer_oriented_statistical_methods/ordinary_least_squares_regressor.cpp index 06bd4ea52..de02b27bb 100644 --- a/computer_oriented_statistical_methods/ordinary_least_squares_regressor.cpp +++ b/computer_oriented_statistical_methods/ordinary_least_squares_regressor.cpp @@ -1,11 +1,13 @@ /** * @file + * \brief Linear regression example using [Ordinary least + * squares](https://en.wikipedia.org/wiki/Ordinary_least_squares) * * Program that gets the number of data samples and number of features per * sample along with output per sample. It applies OLS regression to compute * the regression output for additional test data samples. */ -#include +#include // for print formatting #include #include @@ -52,7 +54,8 @@ inline bool is_square(std::vector> const &A) { // Assuming A is square matrix size_t N = A.size(); for (size_t i = 0; i < N; i++) - if (A[i].size() != N) return false; + if (A[i].size() != N) + return false; return true; } @@ -265,7 +268,8 @@ std::vector> get_inverse( inverse[row] = inverse[row] / divisor; // Row transformations for (size_t row2 = 0; row2 < N; row2++) { - if (row2 == row) continue; + if (row2 == row) + continue; float factor = temp[row2][row]; temp[row2] = temp[row2] - factor * temp[row]; inverse[row2] = inverse[row2] - factor * inverse[row]; diff --git a/computer_oriented_statistical_methods/secant_method.cpp b/computer_oriented_statistical_methods/secant_method.cpp deleted file mode 100644 index c353ef850..000000000 --- a/computer_oriented_statistical_methods/secant_method.cpp +++ /dev/null @@ -1,37 +0,0 @@ -#include -#include - -static float eq(float i) { - return (pow(i, 3) - (4 * i) - 9); // original equation -} - -int main() { - float a, b, z, c, m, n; - for (int i = 0; i < 100; i++) { - z = eq(i); - if (z >= 0) { - b = i; - a = --i; - break; - } - } - - std::cout << "\nFirst initial: " << a; - std::cout << "\nSecond initial: " << b; - for (int i = 0; i < 100; i++) { - float h, d; - m = eq(a); - n = eq(b); - - c = ((a * n) - (b * m)) / (n - m); - a = b; - b = c; - - z = eq(c); - if (z > 0 && z < 0.09) // stoping criteria - break; - } - - std::cout << "\n\nRoot: " << c; - return 0; -} diff --git a/computer_oriented_statistical_methods/successive_approximation.cpp b/computer_oriented_statistical_methods/successive_approximation.cpp index efbcc3bbf..351382f24 100644 --- a/computer_oriented_statistical_methods/successive_approximation.cpp +++ b/computer_oriented_statistical_methods/successive_approximation.cpp @@ -1,9 +1,22 @@ +/** + * \file + * \brief Method of successive approximations using [fixed-point + * iteration](https://en.wikipedia.org/wiki/Fixed-point_iteration) method + */ #include #include -static float eq(float y) { return ((3 * y) - (cos(y)) - 2); } -static float eqd(float y) { return ((0.5) * ((cos(y)) + 2)); } +/** equation 1 + * \f[f(y) = 3y - \cos y -2\f] + */ +static float eq(float y) { return (3 * y) - cos(y) - 2; } +/** equation 2 + * \f[f(y) = \frac{\cos y+2}{2}\f] + */ +static float eqd(float y) { return 0.5 * (cos(y) + 2); } + +/** Main function */ int main() { float y, x1, x2, x3, sum, s, a, f1, f2, gd; int i, n;