From 969e916871f3e168506c8968008fded8122e7a74 Mon Sep 17 00:00:00 2001 From: Krishna Vedala Date: Thu, 28 May 2020 19:54:37 -0400 Subject: [PATCH] document exponential search --- search/exponential_search.cpp | 62 +++++++++++++++++++++++------------ 1 file changed, 41 insertions(+), 21 deletions(-) diff --git a/search/exponential_search.cpp b/search/exponential_search.cpp index 79f09e38b..f57cbf96b 100644 --- a/search/exponential_search.cpp +++ b/search/exponential_search.cpp @@ -1,20 +1,42 @@ -// Copyright 2020 Divide-et-impera-11 +/** + * \file + * \brief [Exponential search + * algorithm](https://en.wikipedia.org/wiki/Exponential_search) + * \copyright 2020 Divide-et-impera-11 + * + * The algorithm try to search the range where the key should be. + * If it has been found we do a binary search there. + * The range of the search grows by exponential every time. + * If the key is larger than the last element of array, the start of + * block(block_front) will be equal to the end of block(block_size) and the + * algorithm return null ponter, every other cases the algoritm return fom the + * loop. + */ #include #include #include -#include +#ifdef _MSC_VER +#include // use for MS Visual C++ +#else +#include // for all other compilers +#endif -// Binary Search Algorithm(use by struzik algorithm) -// Time Complexity O(log n) where 'n' is the number of elements -// Worst Time Complexity O(log n) -// Best Time Complexity Ω(1) -// Space Complexity O(1) -// Auxiliary Space Complexity O(1) +/** Binary Search Algorithm (used by ::struzik_search)\n + * * Time Complexity O(log n) where 'n' is the number of elements + * * Worst Time Complexity O(log n) + * * Best Time Complexity Ω(1) + * * Space Complexity O(1) + * * Auxiliary Space Complexity O(1) + * \returns pointer to value in the array + * \returns `nullptr` if value not found + */ template inline Type* binary_s(Type* array, size_t size, Type key) { int32_t lower_index(0), upper_index(size - 1), middle_index; + while (lower_index <= upper_index) { middle_index = std::floor((lower_index + upper_index) / 2); + if (*(array + middle_index) < key) lower_index = (middle_index + 1); else if (*(array + middle_index) > key) @@ -22,21 +44,17 @@ inline Type* binary_s(Type* array, size_t size, Type key) { else return (array + middle_index); } + return nullptr; } -// Struzik Search Algorithm(Exponential) -// Time Complexity O(log i)where i is the position of search key in the list -// Worst Time Complexity O(log i) -// Best Time Complexity Ω(1) -// Space Complexity O(1) -// Auxiliary Space Complexity O(1) -/* Tha algorithm try to search the range where the key should be. -If it has been found we do a binary search there. -The range of the search grows by exponential every time. -If the key is larger than the last element of array, -the start of block(block_front) will be equal to the end of block(block_size) -and the algorithm return null ponter, -every other cases the algoritm return fom the loop. */ + +/** Struzik Search Algorithm(Exponential) + * * Time Complexity O(log i) where i is the position of search key in the list + * * Worst Time Complexity O(log i) + * * Best Time Complexity Ω(1) + * * Space Complexity O(1) + * * Auxiliary Space Complexity O(1) + */ template Type* struzik_search(Type* array, size_t size, Type key) { uint32_t block_front(0), block_size = size == 0 ? 0 : 1; @@ -51,6 +69,8 @@ Type* struzik_search(Type* array, size_t size, Type key) { } return nullptr; } + +/** Main function */ int main() { // TEST CASES int* sorted_array = new int[7]{7, 10, 15, 23, 70, 105, 203};