mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
Merge pull request #874 from kvedala/minima-algorithm
[feat:] Minima algorithm
This commit is contained in:
commit
96ed582eb2
2
.vscode/settings.json
vendored
2
.vscode/settings.json
vendored
@ -1,5 +1,5 @@
|
||||
{
|
||||
"C_Cpp.clang_format_style": "{ BasedOnStyle: Google, UseTab: Never, IndentWidth: 4, TabWidth: 4, AllowShortIfStatementsOnASingleLine: false, IndentCaseLabels: true, ColumnLimit: 80, AccessModifierOffset: -3 }",
|
||||
"C_Cpp.clang_format_style": "{ BasedOnStyle: Google, UseTab: Never, IndentWidth: 4, TabWidth: 4, AllowShortIfStatementsOnASingleLine: false, IndentCaseLabels: true, ColumnLimit: 80, AccessModifierOffset: -3, AlignConsecutiveMacros: true }",
|
||||
"editor.formatOnSave": true,
|
||||
"editor.formatOnType": true,
|
||||
"editor.formatOnPaste": true
|
||||
|
@ -135,6 +135,7 @@
|
||||
* [Durand Kerner Roots](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/durand_kerner_roots.cpp)
|
||||
* [False Position](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/false_position.cpp)
|
||||
* [Gaussian Elimination](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/gaussian_elimination.cpp)
|
||||
* [Golden Search Extrema](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/golden_search_extrema.cpp)
|
||||
* [Lu Decompose](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/lu_decompose.cpp)
|
||||
* [Newton Raphson Method](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/newton_raphson_method.cpp)
|
||||
* [Ode Forward Euler](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/numerical_methods/ode_forward_euler.cpp)
|
||||
|
150
numerical_methods/golden_search_extrema.cpp
Normal file
150
numerical_methods/golden_search_extrema.cpp
Normal file
@ -0,0 +1,150 @@
|
||||
/**
|
||||
* \file
|
||||
* \brief Find extrema of a univariate real function in a given interval using
|
||||
* [golden section search
|
||||
* algorithm](https://en.wikipedia.org/wiki/Golden-section_search).
|
||||
*
|
||||
* \see brent_method_extrema.cpp
|
||||
* \author [Krishna Vedala](https://github.com/kvedala)
|
||||
*/
|
||||
#define _USE_MATH_DEFINES //< required for MS Visual C++
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <functional>
|
||||
#include <iostream>
|
||||
#include <limits>
|
||||
|
||||
#define EPSILON 1e-7 ///< solution accuracy limit
|
||||
|
||||
/**
|
||||
* @brief Get the minima of a function in the given interval. To get the maxima,
|
||||
* simply negate the function. The golden ratio used here is:\f[
|
||||
* k=\frac{3-\sqrt{5}}{2} \approx 0.381966\ldots\f]
|
||||
*
|
||||
* @param f function to get minima for
|
||||
* @param lim_a lower limit of search window
|
||||
* @param lim_b upper limit of search window
|
||||
* @return local minima found in the interval
|
||||
*/
|
||||
double get_minima(const std::function<double(double)> &f, double lim_a,
|
||||
double lim_b) {
|
||||
uint32_t iters = 0;
|
||||
double c, d;
|
||||
double prev_mean, mean = std::numeric_limits<double>::infinity();
|
||||
|
||||
// golden ratio value
|
||||
const double M_GOLDEN_RATIO = (1.f + std::sqrt(5.f)) / 2.f;
|
||||
|
||||
// ensure that lim_a < lim_b
|
||||
if (lim_a > lim_b) {
|
||||
std::swap(lim_a, lim_b);
|
||||
} else if (std::abs(lim_a - lim_b) <= EPSILON) {
|
||||
std::cerr << "Search range must be greater than " << EPSILON << "\n";
|
||||
return lim_a;
|
||||
}
|
||||
|
||||
do {
|
||||
prev_mean = mean;
|
||||
|
||||
// compute the section ratio width
|
||||
double ratio = (lim_b - lim_a) / M_GOLDEN_RATIO;
|
||||
c = lim_b - ratio; // right-side section start
|
||||
d = lim_a + ratio; // left-side section end
|
||||
|
||||
if (f(c) < f(d)) {
|
||||
// select left section
|
||||
lim_b = d;
|
||||
} else {
|
||||
// selct right section
|
||||
lim_a = c;
|
||||
}
|
||||
|
||||
mean = (lim_a + lim_b) / 2.f;
|
||||
iters++;
|
||||
|
||||
// continue till the interval width is greater than sqrt(system epsilon)
|
||||
} while (std::abs(lim_a - lim_b) > EPSILON);
|
||||
|
||||
std::cout << " (iters: " << iters << ") ";
|
||||
return prev_mean;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Test function to find minima for the function
|
||||
* \f$f(x)= (x-2)^2\f$
|
||||
* in the interval \f$[1,5]\f$
|
||||
* \n Expected result = 2
|
||||
*/
|
||||
void test1() {
|
||||
// define the function to minimize as a lambda function
|
||||
std::function<double(double)> f1 = [](double x) {
|
||||
return (x - 2) * (x - 2);
|
||||
};
|
||||
|
||||
std::cout << "Test 1.... ";
|
||||
|
||||
double minima = get_minima(f1, 1, 5);
|
||||
|
||||
std::cout << minima << "...";
|
||||
|
||||
assert(std::abs(minima - 2) < EPSILON);
|
||||
std::cout << "passed\n";
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Test function to find *maxima* for the function
|
||||
* \f$f(x)= x^{\frac{1}{x}}\f$
|
||||
* in the interval \f$[-2,10]\f$
|
||||
* \n Expected result: \f$e\approx 2.71828182845904509\f$
|
||||
*/
|
||||
void test2() {
|
||||
// define the function to maximize as a lambda function
|
||||
// since we are maximixing, we negated the function return value
|
||||
std::function<double(double)> func = [](double x) {
|
||||
return -std::pow(x, 1.f / x);
|
||||
};
|
||||
|
||||
std::cout << "Test 2.... ";
|
||||
|
||||
double minima = get_minima(func, -2, 10);
|
||||
|
||||
std::cout << minima << " (" << M_E << ")...";
|
||||
|
||||
assert(std::abs(minima - M_E) < EPSILON);
|
||||
std::cout << "passed\n";
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Test function to find *maxima* for the function
|
||||
* \f$f(x)= \cos x\f$
|
||||
* in the interval \f$[0,12]\f$
|
||||
* \n Expected result: \f$\pi\approx 3.14159265358979312\f$
|
||||
*/
|
||||
void test3() {
|
||||
// define the function to maximize as a lambda function
|
||||
// since we are maximixing, we negated the function return value
|
||||
std::function<double(double)> func = [](double x) { return std::cos(x); };
|
||||
|
||||
std::cout << "Test 3.... ";
|
||||
|
||||
double minima = get_minima(func, -4, 12);
|
||||
|
||||
std::cout << minima << " (" << M_PI << ")...";
|
||||
|
||||
assert(std::abs(minima - M_PI) < EPSILON);
|
||||
std::cout << "passed\n";
|
||||
}
|
||||
|
||||
/** Main function */
|
||||
int main() {
|
||||
std::cout.precision(9);
|
||||
|
||||
std::cout << "Computations performed with machine epsilon: " << EPSILON
|
||||
<< "\n";
|
||||
|
||||
test1();
|
||||
test2();
|
||||
test3();
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user