mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
Merge pull request #871 from kvedala/doc-fixes
[docs] fixed documentations
This commit is contained in:
commit
98b2609e1b
@ -7,10 +7,12 @@
|
||||
*
|
||||
* \author [Krishna Vedala](https://github.com/kvedala)
|
||||
*
|
||||
* <img
|
||||
* \details
|
||||
* <a href="https://commons.wikimedia.org/wiki/File:Adaline_flow_chart.gif"><img
|
||||
* src="https://upload.wikimedia.org/wikipedia/commons/b/be/Adaline_flow_chart.gif"
|
||||
* width="200px">
|
||||
* [source](https://commons.wikimedia.org/wiki/File:Adaline_flow_chart.gif)
|
||||
* alt="Structure of an ADALINE network. Source: Wikipedia"
|
||||
* style="width:200px; float:right;"></a>
|
||||
*
|
||||
* ADALINE is one of the first and simplest single layer artificial neural
|
||||
* network. The algorithm essentially implements a linear function
|
||||
* \f[ f\left(x_0,x_1,x_2,\ldots\right) =
|
||||
|
@ -3,9 +3,11 @@
|
||||
* @{
|
||||
* \file
|
||||
* \author [Krishna Vedala](https://github.com/kvedala)
|
||||
*
|
||||
* \brief [Kohonen self organizing
|
||||
* map](https://en.wikipedia.org/wiki/Self-organizing_map) (topological map)
|
||||
*
|
||||
* \details
|
||||
* This example implements a powerful unsupervised learning algorithm called as
|
||||
* a self organizing map. The algorithm creates a connected network of weights
|
||||
* that closely follows the given data points. This thus creates a topological
|
||||
@ -21,7 +23,7 @@
|
||||
* than with GCC on windows
|
||||
* \see kohonen_som_trace.cpp
|
||||
*/
|
||||
#define _USE_MATH_DEFINES // required for MS Visual C++
|
||||
#define _USE_MATH_DEFINES //< required for MS Visual C++
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
|
@ -17,17 +17,24 @@
|
||||
#include <iostream>
|
||||
#include <limits>
|
||||
|
||||
#define EPSILON \
|
||||
1e-6 // std::numeric_limits<double>::epsilon() ///< system accuracy limit
|
||||
#define MAX_ITERATIONS 50000 ///< Maximum number of iterations to check
|
||||
#define EPSILON 1e-10 ///< system accuracy limit
|
||||
#define MAX_ITERATIONS INT16_MAX ///< Maximum number of iterations to check
|
||||
|
||||
/** define \f$f(x)\f$ to find root for
|
||||
/** define \f$f(x)\f$ to find root for.
|
||||
* Currently defined as:
|
||||
* \f[
|
||||
* f(x) = x^3 - 4x - 9
|
||||
* \f]
|
||||
*/
|
||||
static double eq(double i) {
|
||||
return (std::pow(i, 3) - (4 * i) - 9); // original equation
|
||||
}
|
||||
|
||||
/** define the derivative function \f$f'(x)\f$
|
||||
* For the current problem, it is:
|
||||
* \f[
|
||||
* f'(x) = 3x^2 - 4
|
||||
* \f]
|
||||
*/
|
||||
static double eq_der(double i) {
|
||||
return ((3 * std::pow(i, 2)) - 4); // derivative of equation
|
||||
|
@ -3,10 +3,11 @@
|
||||
* \brief Linear regression example using [Ordinary least
|
||||
* squares](https://en.wikipedia.org/wiki/Ordinary_least_squares)
|
||||
*
|
||||
* \author [Krishna Vedala](https://github.com/kvedala)
|
||||
* Program that gets the number of data samples and number of features per
|
||||
* sample along with output per sample. It applies OLS regression to compute
|
||||
* the regression output for additional test data samples.
|
||||
*
|
||||
* \author [Krishna Vedala](https://github.com/kvedala)
|
||||
*/
|
||||
#include <iomanip> // for print formatting
|
||||
#include <iostream>
|
||||
|
Loading…
Reference in New Issue
Block a user