mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
Prims Algo
This commit is contained in:
parent
2c3d223380
commit
9c511719e1
Binary file not shown.
98
Greedy Algorithms/Prims Minimum Spanning Tree.cpp
Normal file
98
Greedy Algorithms/Prims Minimum Spanning Tree.cpp
Normal file
@ -0,0 +1,98 @@
|
||||
// A C / C++ program for Prim's Minimum Spanning Tree (MST) algorithm.
|
||||
// The program is for adjacency matrix representation of the graph
|
||||
|
||||
#include <stdio.h>
|
||||
#include <limits.h>
|
||||
|
||||
// Number of vertices in the graph
|
||||
#define V 4
|
||||
|
||||
// A utility function to find the vertex with minimum key value, from
|
||||
// the set of vertices not yet included in MST
|
||||
int minKey(int key[], bool mstSet[])
|
||||
{
|
||||
// Initialize min value
|
||||
int min = INT_MAX, min_index;
|
||||
|
||||
for (int v = 0; v < V; v++)
|
||||
if (mstSet[v] == false && key[v] < min)
|
||||
min = key[v], min_index = v;
|
||||
|
||||
return min_index;
|
||||
}
|
||||
|
||||
// A utility function to print the constructed MST stored in parent[]
|
||||
int printMST(int parent[], int n, int graph[V][V])
|
||||
{
|
||||
printf("Edge Weight\n");
|
||||
for (int i = 1; i < V; i++)
|
||||
printf("%d - %d %d \n", parent[i], i, graph[i][parent[i]]);
|
||||
}
|
||||
|
||||
// Function to construct and print MST for a graph represented using adjacency
|
||||
// matrix representation
|
||||
void primMST(int graph[V][V])
|
||||
{
|
||||
int parent[V]; // Array to store constructed MST
|
||||
int key[V]; // Key values used to pick minimum weight edge in cut
|
||||
bool mstSet[V]; // To represent set of vertices not yet included in MST
|
||||
|
||||
// Initialize all keys as INFINITE
|
||||
for (int i = 0; i < V; i++)
|
||||
key[i] = INT_MAX, mstSet[i] = false;
|
||||
|
||||
// Always include first 1st vertex in MST.
|
||||
key[0] = 0; // Make key 0 so that this vertex is picked as first vertex
|
||||
parent[0] = -1; // First node is always root of MST
|
||||
|
||||
// The MST will have V vertices
|
||||
for (int count = 0; count < V-1; count++)
|
||||
{
|
||||
// Pick the minimum key vertex from the set of vertices
|
||||
// not yet included in MST
|
||||
int u = minKey(key, mstSet);
|
||||
|
||||
// Add the picked vertex to the MST Set
|
||||
mstSet[u] = true;
|
||||
|
||||
// Update key value and parent index of the adjacent vertices of
|
||||
// the picked vertex. Consider only those vertices which are not yet
|
||||
// included in MST
|
||||
for (int v = 0; v < V; v++)
|
||||
|
||||
// graph[u][v] is non zero only for adjacent vertices of m
|
||||
// mstSet[v] is false for vertices not yet included in MST
|
||||
// Update the key only if graph[u][v] is smaller than key[v]
|
||||
if (graph[u][v] && mstSet[v] == false && graph[u][v] < key[v])
|
||||
parent[v] = u, key[v] = graph[u][v];
|
||||
}
|
||||
|
||||
// print the constructed MST
|
||||
printMST(parent, V, graph);
|
||||
}
|
||||
|
||||
|
||||
// driver program to test above function
|
||||
int main()
|
||||
{
|
||||
/* Let us create the following graph
|
||||
2 3
|
||||
(0)--(1)--(2)
|
||||
| / \ |
|
||||
6| 8/ \5 |7
|
||||
| / \ |
|
||||
(3)-------(4)
|
||||
9 */
|
||||
int graph[V][V] = {
|
||||
{0, 2, 1, 2},
|
||||
{2, 0, 3, 3},
|
||||
{1, 3, 0, 4},
|
||||
{2, 3, 4, 0}
|
||||
};
|
||||
|
||||
|
||||
// Print the solution
|
||||
primMST(graph);
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user