feat: added integral approximation algorithm (#1485)

* Setup general integral aprroximation algorithm template

* feat: added integral approximation algorithm

* updating DIRECTORY.md

* feat: added integral approximation algorithm

* test: added tests for integral approximation algorithm

* docs: added comments and explanation for integral approximation algorithm

* fix: updated for loop within algorithm

* fix: data type conversions

* Modified dividing by 2

Maintains functionality but dividing by 2 is easier to read/understand

* Update math/integral_approximation.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update math/integral_approximation.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update math/integral_approximation.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update math/integral_approximation.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update math/integral_approximation.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* fix: Apply suggestions from code review

* fix: Apply suggestions from code review

* fix: Apply suggestions from code review

* fix: Apply suggestions from code review

* fix: Apply suggestions from code review

* fix: Apply suggestions from code review

* fix: Apply suggestions from code review

* fix: Apply suggestions from code review

* fix: Apply suggestions from code review

* fix: Apply suggestions from code review

* fix: Apply suggestions from code review

* feat: added Wikipedia link and detailed description

* fix: Apply suggestions from code review

* Update math/integral_approximation.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update math/integral_approximation.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update math/integral_approximation.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* style: updated what the library/header is for

* docs: Update math/integral_approximation.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* fix: changed int to uint64_t

* Update math/integral_approximation.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Shiqi Sheng <shiqisheng00@gmail.com>
Co-authored-by: David Leal <halfpacho@gmail.com>
This commit is contained in:
Benjamin Walton 2021-04-22 12:41:44 -04:00 committed by GitHub
parent a043b6b3df
commit a41b707919
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 126 additions and 0 deletions

View File

@ -163,6 +163,7 @@
* [Gcd Iterative Euclidean](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/gcd_iterative_euclidean.cpp)
* [Gcd Of N Numbers](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/gcd_of_n_numbers.cpp)
* [Gcd Recursive Euclidean](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/gcd_recursive_euclidean.cpp)
* [Integral Approximation](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/integral_approximation.cpp)
* [Large Factorial](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/large_factorial.cpp)
* [Large Number](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/large_number.h)
* [Largest Power](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/largest_power.cpp)

View File

@ -0,0 +1,125 @@
/**
* @file
* @brief Compute integral approximation of the function using [Riemann sum](https://en.wikipedia.org/wiki/Riemann_sum)
* @details In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth-century German mathematician Bernhard Riemann.
* One very common application is approximating the area of functions or lines on a graph and the length of curves and other approximations.
* The sum is calculated by partitioning the region into shapes (rectangles, trapezoids, parabolas, or cubics) that form a region similar to the region being measured, then calculating the area for each of these shapes, and finally adding all of these small areas together.
* This approach can be used to find a numerical approximation for a definite integral even if the fundamental theorem of calculus does not make it easy to find a closed-form solution.
* Because the region filled by the small shapes is usually not the same shape as the region being measured, the Riemann sum will differ from the area being measured.
* This error can be reduced by dividing up the region more finely, using smaller and smaller shapes. As the shapes get smaller and smaller, the sum approaches the Riemann integral.
* \author [Benjamin Walton](https://github.com/bwalton24)
* \author [Shiqi Sheng](https://github.com/shiqisheng00)
*/
#include <cassert> /// for assert
#include <cmath> /// for mathematical functions
#include <functional> /// for passing in functions
#include <iostream> /// for IO operations
/**
* @namespace math
* @brief Mathematical functions
*/
namespace math {
/**
* @brief Computes integral approximation
* @param lb lower bound
* @param ub upper bound
* @param func function passed in
* @param delta
* @returns integral approximation of function from [lb, ub]
*/
double integral_approx(double lb, double ub,
const std::function<double(double)>& func,
double delta = .0001) {
double result = 0;
uint64_t numDeltas = static_cast<uint64_t>((ub - lb) / delta);
for (int i = 0; i < numDeltas; i++) {
double begin = lb + i * delta;
double end = lb + (i + 1) * delta;
result += delta * (func(begin) + func(end)) / 2;
}
return result;
}
/**
* @brief Wrapper to evaluate if the approximated
* value is within `.XX%` threshold of the exact value.
* @param approx aprroximate value
* @param exact expected value
* @param threshold values from [0, 1)
*/
void test_eval(double approx, double expected, double threshold) {
assert(approx >= expected * (1 - threshold));
assert(approx <= expected * (1 + threshold));
}
/**
* @brief Self-test implementations to
* test the `integral_approx` function.
*
* @returns `void`
*/
} // namespace math
static void test() {
double test_1 = math::integral_approx(
3.24, 7.56, [](const double x) { return log(x) + exp(x) + x; });
std::cout << "Test Case 1" << std::endl;
std::cout << "function: log(x) + e^x + x" << std::endl;
std::cout << "range: [3.24, 7.56]" << std::endl;
std::cout << "value: " << test_1 << std::endl;
math::test_eval(test_1, 1924.80384023549, .001);
std::cout << "Test 1 Passed!" << std::endl;
std::cout << "=====================" << std::endl;
double test_2 = math::integral_approx(0.023, 3.69, [](const double x) {
return x * x + cos(x) + exp(x) + log(x) * log(x);
});
std::cout << "Test Case 2" << std::endl;
std::cout << "function: x^2 + cos(x) + e^x + log^2(x)" << std::endl;
std::cout << "range: [.023, 3.69]" << std::endl;
std::cout << "value: " << test_2 << std::endl;
math::test_eval(test_2, 58.71291345202729, .001);
std::cout << "Test 2 Passed!" << std::endl;
std::cout << "=====================" << std::endl;
double test_3 = math::integral_approx(
10.78, 24.899, [](const double x) { return x * x * x - x * x + 378; });
std::cout << "Test Case 3" << std::endl;
std::cout << "function: x^3 - x^2 + 378" << std::endl;
std::cout << "range: [10.78, 24.899]" << std::endl;
std::cout << "value: " << test_3 << std::endl;
math::test_eval(test_3, 93320.65915078377, .001);
std::cout << "Test 3 Passed!" << std::endl;
std::cout << "=====================" << std::endl;
double test_4 = math::integral_approx(
.101, .505,
[](const double x) { return cos(x) * tan(x) * x * x + exp(x); },
.00001);
std::cout << "Test Case 4" << std::endl;
std::cout << "function: cos(x)*tan(x)*x^2 + e^x" << std::endl;
std::cout << "range: [.101, .505]" << std::endl;
std::cout << "value: " << test_4 << std::endl;
math::test_eval(test_4, 0.566485986311631, .001);
std::cout << "Test 4 Passed!" << std::endl;
std::cout << "=====================" << std::endl;
double test_5 = math::integral_approx(
-1, 1, [](const double x) { return exp(-1 / (x * x)); });
std::cout << "Test Case 5" << std::endl;
std::cout << "function: e^(-1/x^2)" << std::endl;
std::cout << "range: [-1, 1]" << std::endl;
std::cout << "value: " << test_5 << std::endl;
math::test_eval(test_5, 0.1781477117815607, .001);
std::cout << "Test 5 Passed!" << std::endl;
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
return 0;
}