diff --git a/DIRECTORY.md b/DIRECTORY.md index 5117a9ba5..a5142cbec 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -163,6 +163,7 @@ * [Gcd Iterative Euclidean](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/gcd_iterative_euclidean.cpp) * [Gcd Of N Numbers](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/gcd_of_n_numbers.cpp) * [Gcd Recursive Euclidean](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/gcd_recursive_euclidean.cpp) + * [Integral Approximation](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/integral_approximation.cpp) * [Large Factorial](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/large_factorial.cpp) * [Large Number](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/large_number.h) * [Largest Power](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/largest_power.cpp) diff --git a/math/integral_approximation.cpp b/math/integral_approximation.cpp new file mode 100644 index 000000000..7e72ef404 --- /dev/null +++ b/math/integral_approximation.cpp @@ -0,0 +1,125 @@ +/** + * @file + * @brief Compute integral approximation of the function using [Riemann sum](https://en.wikipedia.org/wiki/Riemann_sum) + * @details In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth-century German mathematician Bernhard Riemann. + * One very common application is approximating the area of functions or lines on a graph and the length of curves and other approximations. + * The sum is calculated by partitioning the region into shapes (rectangles, trapezoids, parabolas, or cubics) that form a region similar to the region being measured, then calculating the area for each of these shapes, and finally adding all of these small areas together. + * This approach can be used to find a numerical approximation for a definite integral even if the fundamental theorem of calculus does not make it easy to find a closed-form solution. + * Because the region filled by the small shapes is usually not the same shape as the region being measured, the Riemann sum will differ from the area being measured. + * This error can be reduced by dividing up the region more finely, using smaller and smaller shapes. As the shapes get smaller and smaller, the sum approaches the Riemann integral. + * \author [Benjamin Walton](https://github.com/bwalton24) + * \author [Shiqi Sheng](https://github.com/shiqisheng00) + */ +#include /// for assert +#include /// for mathematical functions +#include /// for passing in functions +#include /// for IO operations + +/** + * @namespace math + * @brief Mathematical functions + */ +namespace math { +/** + * @brief Computes integral approximation + * @param lb lower bound + * @param ub upper bound + * @param func function passed in + * @param delta + * @returns integral approximation of function from [lb, ub] + */ +double integral_approx(double lb, double ub, + const std::function& func, + double delta = .0001) { + double result = 0; + uint64_t numDeltas = static_cast((ub - lb) / delta); + for (int i = 0; i < numDeltas; i++) { + double begin = lb + i * delta; + double end = lb + (i + 1) * delta; + result += delta * (func(begin) + func(end)) / 2; + } + return result; +} + +/** + * @brief Wrapper to evaluate if the approximated + * value is within `.XX%` threshold of the exact value. + * @param approx aprroximate value + * @param exact expected value + * @param threshold values from [0, 1) + */ +void test_eval(double approx, double expected, double threshold) { + assert(approx >= expected * (1 - threshold)); + assert(approx <= expected * (1 + threshold)); +} + +/** + * @brief Self-test implementations to + * test the `integral_approx` function. + * + * @returns `void` + */ +} // namespace math + +static void test() { + double test_1 = math::integral_approx( + 3.24, 7.56, [](const double x) { return log(x) + exp(x) + x; }); + std::cout << "Test Case 1" << std::endl; + std::cout << "function: log(x) + e^x + x" << std::endl; + std::cout << "range: [3.24, 7.56]" << std::endl; + std::cout << "value: " << test_1 << std::endl; + math::test_eval(test_1, 1924.80384023549, .001); + std::cout << "Test 1 Passed!" << std::endl; + std::cout << "=====================" << std::endl; + + double test_2 = math::integral_approx(0.023, 3.69, [](const double x) { + return x * x + cos(x) + exp(x) + log(x) * log(x); + }); + std::cout << "Test Case 2" << std::endl; + std::cout << "function: x^2 + cos(x) + e^x + log^2(x)" << std::endl; + std::cout << "range: [.023, 3.69]" << std::endl; + std::cout << "value: " << test_2 << std::endl; + math::test_eval(test_2, 58.71291345202729, .001); + std::cout << "Test 2 Passed!" << std::endl; + std::cout << "=====================" << std::endl; + + double test_3 = math::integral_approx( + 10.78, 24.899, [](const double x) { return x * x * x - x * x + 378; }); + std::cout << "Test Case 3" << std::endl; + std::cout << "function: x^3 - x^2 + 378" << std::endl; + std::cout << "range: [10.78, 24.899]" << std::endl; + std::cout << "value: " << test_3 << std::endl; + math::test_eval(test_3, 93320.65915078377, .001); + std::cout << "Test 3 Passed!" << std::endl; + std::cout << "=====================" << std::endl; + + double test_4 = math::integral_approx( + .101, .505, + [](const double x) { return cos(x) * tan(x) * x * x + exp(x); }, + .00001); + std::cout << "Test Case 4" << std::endl; + std::cout << "function: cos(x)*tan(x)*x^2 + e^x" << std::endl; + std::cout << "range: [.101, .505]" << std::endl; + std::cout << "value: " << test_4 << std::endl; + math::test_eval(test_4, 0.566485986311631, .001); + std::cout << "Test 4 Passed!" << std::endl; + std::cout << "=====================" << std::endl; + + double test_5 = math::integral_approx( + -1, 1, [](const double x) { return exp(-1 / (x * x)); }); + std::cout << "Test Case 5" << std::endl; + std::cout << "function: e^(-1/x^2)" << std::endl; + std::cout << "range: [-1, 1]" << std::endl; + std::cout << "value: " << test_5 << std::endl; + math::test_eval(test_5, 0.1781477117815607, .001); + std::cout << "Test 5 Passed!" << std::endl; +} + +/** + * @brief Main function + * @returns 0 on exit + */ +int main() { + test(); // run self-test implementations + return 0; +}