mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
feat: Added a probabilistic Miller-Rabin Primality Test (#845)
* feat: Added a probabilitic Miller-Rabin Primality test * docs: Documentation Changes * fix: Issue with the assert call * docs: grammatical error * docs: corrected the copyright comment * docs: Fixed some documentation issues. * docs: fix latex issues * docs and fix: Fixed documentation issues and vector by const reference and iterator over const reference. * docs: fixed latex documentation issue. * docs: spelling errors * docs: spelling error fixed
This commit is contained in:
parent
de70c5d864
commit
a48d05fb62
183
math/miller_rabin.cpp
Normal file
183
math/miller_rabin.cpp
Normal file
@ -0,0 +1,183 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 @author tjgurwara99
|
||||||
|
* @file
|
||||||
|
*
|
||||||
|
* A basic implementation of Miller-Rabin primality test.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
#include <iostream>
|
||||||
|
#include <random>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Function to give a binary representation of a number in reverse order
|
||||||
|
* @param num integer number that we want to convert
|
||||||
|
* @return result vector of the number input in reverse binary
|
||||||
|
*/
|
||||||
|
template <typename T> std::vector<T> reverse_binary(T num) {
|
||||||
|
std::vector<T> result;
|
||||||
|
T temp = num;
|
||||||
|
while (temp > 0) {
|
||||||
|
result.push_back(temp % 2);
|
||||||
|
temp = temp / 2;
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Function for modular exponentiation.
|
||||||
|
* This function is an efficient modular exponentiation function.
|
||||||
|
* It can be used with any big integer library such as Boost multiprecision
|
||||||
|
* to give result any modular exponentiation problem relatively quickly.
|
||||||
|
* @param base number being raised to a power as integer
|
||||||
|
* @param rev_binary_exponent reverse binary of the power the base is being
|
||||||
|
* raised to
|
||||||
|
* @param mod modulo
|
||||||
|
* @return r the modular exponentiation of \f$a^{n} \equiv r \mod{m}\f$ where
|
||||||
|
* \f$n\f$ is the base 10 representation of rev_binary_exponent and \f$m = mod \f$
|
||||||
|
* parameter.
|
||||||
|
*/
|
||||||
|
template <typename T>
|
||||||
|
T modular_exponentiation(T base, const std::vector<T> &rev_binary_exponent,
|
||||||
|
T mod) {
|
||||||
|
if (mod == 1)
|
||||||
|
return 0;
|
||||||
|
T b = 1;
|
||||||
|
if (rev_binary_exponent.size() == 0)
|
||||||
|
return b;
|
||||||
|
T A = base;
|
||||||
|
if (rev_binary_exponent[0] == 1)
|
||||||
|
b = base;
|
||||||
|
|
||||||
|
for (typename std::vector<T>::const_iterator it =
|
||||||
|
rev_binary_exponent.cbegin() + 1;
|
||||||
|
it != rev_binary_exponent.cend(); ++it) {
|
||||||
|
A = A * A % mod;
|
||||||
|
if (*it == 1)
|
||||||
|
b = A * b % mod;
|
||||||
|
}
|
||||||
|
return b;
|
||||||
|
}
|
||||||
|
|
||||||
|
/** Function for testing the conditions that are satisfied when a number is
|
||||||
|
* prime.
|
||||||
|
* @param d number such that \f$d \cdot 2^r = n - 1\f$ where \f$n = num\f$
|
||||||
|
* parameter and \f$r \geq 1\f$
|
||||||
|
* @param num number being tested for primality.
|
||||||
|
* @return 'false' if n is composite
|
||||||
|
* @return 'true' if n is (probably) prime.
|
||||||
|
*/
|
||||||
|
template <typename T> bool miller_test(T d, T num) {
|
||||||
|
// random number seed
|
||||||
|
std::random_device rd_seed;
|
||||||
|
// random number generator
|
||||||
|
std::mt19937 gen(rd_seed());
|
||||||
|
// Uniformly distributed range [2, num - 2] for random numbers
|
||||||
|
std::uniform_int_distribution<> distribution(2, num - 2);
|
||||||
|
// Random number generated in the range [2, num -2].
|
||||||
|
T random = distribution(gen);
|
||||||
|
// vector for reverse binary of the power
|
||||||
|
std::vector<T> power = reverse_binary(d);
|
||||||
|
// x = random ^ d % num
|
||||||
|
T x = modular_exponentiation(random, power, num);
|
||||||
|
// miller conditions
|
||||||
|
if (x == 1 || x == num - 1) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
while (d != num - 1) {
|
||||||
|
x = (x * x) % num;
|
||||||
|
d *= 2;
|
||||||
|
if (x == 1) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
if (x == num - 1) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Function that test (probabilistically) whether a given number is a prime
|
||||||
|
* based on the Miller-Rabin Primality Test.
|
||||||
|
* @param num number to be tested for primality.
|
||||||
|
* @param repeats number of repetitions for the test to increase probability of
|
||||||
|
* correct result.
|
||||||
|
* @return 'false' if num is composite
|
||||||
|
* @return 'true' if num is (probably) prime
|
||||||
|
*
|
||||||
|
* \detail
|
||||||
|
* First we check whether the num input is less than 4, if so we can determine
|
||||||
|
* whether this is a prime or composite by checking for 2 and 3.
|
||||||
|
* Next we check whether this num is odd (as all primes greater than 2 are odd).
|
||||||
|
* Next we write our num in the following format \f$num = 2^r \cdot d + 1\f$. After
|
||||||
|
* finding r and d for our input num, we use for loop repeat number of times
|
||||||
|
* inside which we check the miller conditions using the function miller_test.
|
||||||
|
* If miller_test returns false then the number is composite
|
||||||
|
* After the loop finishes completely without issuing a false return call,
|
||||||
|
* we can conclude that this number is probably prime.
|
||||||
|
*/
|
||||||
|
template <typename T> bool miller_rabin_primality_test(T num, T repeats) {
|
||||||
|
if (num <= 4) {
|
||||||
|
// If num == 2 or num == 3 then prime
|
||||||
|
if (num == 2 || num == 3) {
|
||||||
|
return true;
|
||||||
|
} else {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// If num is even then not prime
|
||||||
|
if (num % 2 == 0) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
// Finding d and r in num = 2^r * d + 1
|
||||||
|
T d = num - 1, r = 0;
|
||||||
|
while (d % 2 == 0) {
|
||||||
|
d = d / 2;
|
||||||
|
r++;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (T i = 0; i < repeats; ++i) {
|
||||||
|
if (!miller_test(d, num)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Functions for testing the miller_rabin_primality_test() function with some
|
||||||
|
* assert statements.
|
||||||
|
*/
|
||||||
|
void tests() {
|
||||||
|
// First test on 2
|
||||||
|
assert(((void)"2 is prime but function says otherwise.\n",
|
||||||
|
miller_rabin_primality_test(2, 1) == true));
|
||||||
|
std::cout << "First test passes." << std::endl;
|
||||||
|
// Second test on 5
|
||||||
|
assert(((void)"5 should be prime but the function says otherwise.\n",
|
||||||
|
miller_rabin_primality_test(5, 3) == true));
|
||||||
|
std::cout << "Second test passes." << std::endl;
|
||||||
|
// Third test on 23
|
||||||
|
assert(((void)"23 should be prime but the function says otherwise.\n",
|
||||||
|
miller_rabin_primality_test(23, 3) == true));
|
||||||
|
std::cout << "Third test passes." << std::endl;
|
||||||
|
// Fourth test on 16
|
||||||
|
assert(((void)"16 is not a prime but the function says otherwise.\n",
|
||||||
|
miller_rabin_primality_test(16, 3) == false));
|
||||||
|
std::cout << "Fourth test passes." << std::endl;
|
||||||
|
// Fifth test on 27
|
||||||
|
assert(((void)"27 is not a prime but the function says otherwise.\n",
|
||||||
|
miller_rabin_primality_test(27, 3) == false));
|
||||||
|
std::cout << "Fifth test passes." << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Main function
|
||||||
|
*/
|
||||||
|
int main() {
|
||||||
|
tests();
|
||||||
|
return 0;
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user