Added Sparse Table for range query (#996)

* Added Sparse Table for range query

* Fixed Lint Warnings

* Fixed comments and Lint warnings

* Fixed comments

* Fixed comments and Lint warnings

* Fixed comments and Lint warnings

* Fixed variable reference Lint warnings

* Added documentation for functions parameters and return statements

* updating DIRECTORY.md

* Added documentation

* Applied namespace range_queries

Co-authored-by: David Leal <halfpacho@gmail.com>

* Updated wikipedia documentation link

* Resolved comments

* Fixed typo

Co-authored-by: David Leal <halfpacho@gmail.com>

* Resolved comments

* Added tests

* Cleaned up debugging statements

* Resolved comments

* Resolved Comments

* Update sparse_table.cpp

* Resolved comments

Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com>

* Fixed comments

* Update sparse_table.cpp

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: David Leal <halfpacho@gmail.com>
Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com>
This commit is contained in:
Arpan Mukherjee 2020-10-16 22:08:00 +05:30 committed by GitHub
parent 95650899fe
commit a55e362ee1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 102 additions and 0 deletions

View File

@ -213,6 +213,7 @@
* [Heavy Light Decomposition](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/range_queries/heavy_light_decomposition.cpp) * [Heavy Light Decomposition](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/range_queries/heavy_light_decomposition.cpp)
* [Mo](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/range_queries/mo.cpp) * [Mo](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/range_queries/mo.cpp)
* [Segtree](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/range_queries/segtree.cpp) * [Segtree](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/range_queries/segtree.cpp)
* [Sparse Table](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/range_queries/sparse_table.cpp)
## Search ## Search
* [Binary Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/search/binary_search.cpp) * [Binary Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/search/binary_search.cpp)

101
range_queries/sparse_table.cpp Executable file
View File

@ -0,0 +1,101 @@
/**
* @file sparse_table.cpp
* @brief Implementation of [Sparse Table](https://en.wikipedia.org/wiki/Range_minimum_query) data structure
*
* @details
* Sparse Table is a data structure, that allows answering range queries.
* It can answer most range queries in O(logn), but its true power is answering range minimum queries
* or equivalent range maximum queries). For those queries it can compute the answer in O(1) time.
*
* * Running Time Complexity \n
* * Build : O(NlogN) \n
* * Range Query : O(1) \n
*/
#include <vector>
#include <cassert>
#include <iostream>
#include <algorithm>
/**
* @namespace range_queries
* @brief Range Queries algorithms
*/
namespace range_queries {
/**
* @namespace sparse_table
* @brief Range queries using sparse-tables
*/
namespace sparse_table {
/**
* This function precomputes intial log table for further use.
* @param n value of the size of the input array
* @return corresponding vector of the log table
*/
template<typename T>
std::vector<T> computeLogs(const std::vector<T>& A) {
int n = A.size();
std::vector<T> logs(n);
logs[1] = 0;
for (int i = 2 ; i < n ; i++) {
logs[i] = logs[i/2] + 1;
}
return logs;
}
/**
* This functions builds the primary data structure sparse table
* @param n value of the size of the input array
* @param A array of the input integers
* @param logs array of the log table
* @return created sparse table data structure
*/
template<typename T>
std::vector<std::vector<T> > buildTable(const std::vector<T>& A, const std::vector<T>& logs) {
int n = A.size();
std::vector<std::vector<T> > table(20, std::vector<T>(n+5, 0));
int curLen = 0;
for (int i = 0 ; i <= logs[n] ; i++) {
curLen = 1 << i;
for (int j = 0 ; j + curLen < n ; j++) {
if (curLen == 1) {
table[i][j] = A[j];
}
else {
table[i][j] = std::min(table[i-1][j], table[i-1][j + curLen/2]);
}
}
}
return table;
}
/**
* This function is the query function to get the range minimum value
* @param beg beginning index of the query range
* @param end ending index of the query range
* @param logs array of the log table
* @param table sparse table data structure for the input array
* @return minimum value for the [beg, end] range for the input array
*/
template<typename T>
int getMinimum(int beg, int end, const std::vector<T>& logs, const std::vector<std::vector<T> >& table) {
int p = logs[end - beg + 1];
int pLen = 1 << p;
return std::min(table[p][beg], table[p][end - pLen + 1]);
}
}
} // namespace range_queries
/**
* Main function
*/
int main() {
std::vector<int> A{1, 2, 0, 3, 9};
std::vector<int> logs = range_queries::sparse_table::computeLogs(A);
std::vector<std::vector<int> > table = range_queries::sparse_table::buildTable(A, logs);
assert(range_queries::sparse_table::getMinimum(0, 0, logs, table) == 1);
assert(range_queries::sparse_table::getMinimum(0, 4, logs, table) == 0);
assert(range_queries::sparse_table::getMinimum(2, 4, logs, table) == 0);
return 0;
}