mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
namespaces added datatype changed for big number documentation improved
This commit is contained in:
parent
ecd14b44fd
commit
a69051ac53
@ -1,56 +1,112 @@
|
||||
#include <iostream>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
/**
|
||||
* @file
|
||||
* @brief [Disjoint union](https://en.wikipedia.org/wiki/Disjoint_union)
|
||||
*
|
||||
* @details
|
||||
* The Disjoint union is the technique to find connected component in graph efficiently.
|
||||
*
|
||||
* ### Algorithm
|
||||
* In Graph, if you have to find out the number of connected components, there are 2 options
|
||||
* 1. Depth first search
|
||||
* 2. Disjoint union
|
||||
* 1st option is inefficient, Disjoint union is the most optimal way to find this.
|
||||
*/
|
||||
#include <iostream> /// for io operations
|
||||
#include <set> /// for std::set
|
||||
#include <vector> /// for std::vector
|
||||
|
||||
int number_of_nodes; // denotes number of nodes;
|
||||
std::vector<int> parent;
|
||||
std::vector<int> connected_set_size;
|
||||
void make_set() { // function the initialize every node as it's own parent
|
||||
for (int i = 1; i <= number_of_nodes; i++) {
|
||||
/**
|
||||
* @namespace graph
|
||||
* @brief Graph Algorithms
|
||||
*/
|
||||
namespace graph {
|
||||
|
||||
/**
|
||||
* @namespace disjoint_union
|
||||
* @brief Function for [Disjoint union] (https://en.wikipedia.org/wiki/Disjoint_union) implementation
|
||||
*/
|
||||
namespace disjoint_union {
|
||||
|
||||
int64_t number_of_nodes; // denotes number of nodes
|
||||
std::vector<int64_t> parent; // parent of each node
|
||||
std::vector<int64_t> connected_set_size; // size of each set
|
||||
/**
|
||||
* @brief function the initialize every node as it's own parent
|
||||
* @returns void
|
||||
*/
|
||||
void make_set() {
|
||||
for (int64_t i = 1; i <= number_of_nodes; i++) {
|
||||
parent[i] = i;
|
||||
connected_set_size[i] = 1;
|
||||
}
|
||||
}
|
||||
// To find the component where following node belongs to
|
||||
int find_set(int v) {
|
||||
if (v == parent[v]) {
|
||||
return v;
|
||||
/**
|
||||
* @brief To find the component where following node belongs to
|
||||
* @param val parent of val should be found
|
||||
* @return parent of val
|
||||
*/
|
||||
int64_t find_set(int64_t val) {
|
||||
while (parent[val] != val) {
|
||||
parent[val] = parent[parent[val]];
|
||||
val = parent[val];
|
||||
}
|
||||
return parent[v] = find_set(parent[v]);
|
||||
return val;
|
||||
}
|
||||
/**
|
||||
* @brief To join 2 components to belong to one
|
||||
* @param node1 1st component
|
||||
* @param node2 2nd component
|
||||
* @returns void
|
||||
*/
|
||||
void union_sets(int64_t node1, int64_t node2) {
|
||||
node1 = find_set(node1); // find the parent of node1
|
||||
node2 = find_set(node2); // find the parent of node2
|
||||
|
||||
void union_sets(int a, int b) { // To join 2 components to belong to one
|
||||
a = find_set(a);
|
||||
b = find_set(b);
|
||||
if (a != b) {
|
||||
if (connected_set_size[a] < connected_set_size[b]) {
|
||||
std::swap(a, b);
|
||||
// If parents of both nodes are not same, combine them
|
||||
if (node1 != node2) {
|
||||
if (connected_set_size[node1] < connected_set_size[node2]) {
|
||||
std::swap(node1, node2); // swap both components
|
||||
}
|
||||
parent[b] = a;
|
||||
connected_set_size[a] += connected_set_size[b];
|
||||
parent[node2] = node1; // make node1 as parent of node2.
|
||||
connected_set_size[node1] +=
|
||||
connected_set_size[node2]; // sum the size of both as they combined
|
||||
}
|
||||
}
|
||||
|
||||
int no_of_connected_components() { // To find total no of connected components
|
||||
std::set<int> temp; // temp set to count number of connected components
|
||||
for (int i = 1; i <= number_of_nodes; i++) temp.insert(find_set(i));
|
||||
return temp.size();
|
||||
/**
|
||||
* @brief To find total no of connected components
|
||||
* @return Number of connected components
|
||||
*/
|
||||
int64_t no_of_connected_components() {
|
||||
std::set<int64_t> temp; // temp set to count number of connected components
|
||||
for (int64_t i = 1; i <= number_of_nodes; i++) temp.insert(find_set(i));
|
||||
return temp.size(); // return the size of temp set
|
||||
}
|
||||
|
||||
// All critical/corner cases have been taken care of.
|
||||
// Input your required values: (not hardcoded)
|
||||
int main() {
|
||||
/**
|
||||
* @brief Test Implementations
|
||||
* @returns void
|
||||
*/
|
||||
static void test() {
|
||||
std::cin >> number_of_nodes;
|
||||
parent.resize(number_of_nodes + 1);
|
||||
connected_set_size.resize(number_of_nodes + 1);
|
||||
make_set();
|
||||
int edges = 0;
|
||||
int64_t edges = 0;
|
||||
std::cin >> edges; // no of edges in the graph
|
||||
while (edges--) {
|
||||
int node_a = 0, node_b = 0;
|
||||
int64_t node_a = 0, node_b = 0;
|
||||
std::cin >> node_a >> node_b;
|
||||
union_sets(node_a, node_b);
|
||||
}
|
||||
std::cout << no_of_connected_components() << std::endl;
|
||||
return 0;
|
||||
}
|
||||
} // namespace disjoint_union
|
||||
} // namespace graph
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main() {
|
||||
graph::disjoint_union::test(); // Execute the tests
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user