mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
clang-format and clang-tidy fixes for a6594c85
This commit is contained in:
parent
a6594c85c0
commit
a8a3f7c6fc
@ -1,70 +1,75 @@
|
|||||||
/**
|
/**
|
||||||
* @file
|
* @file
|
||||||
* @brief [A fast Fourier transform (FFT)](https://medium.com/@aiswaryamathur/understanding-fast-fouriertransform-from-scratch-to-solve-polynomial-multiplication-8018d511162f) is an algorithm that computes the
|
* @brief [A fast Fourier transform
|
||||||
* discrete Fourier transform (DFT) of a sequence , or its inverse (IDFT) , this algorithm
|
(FFT)](https://medium.com/@aiswaryamathur/understanding-fast-fouriertransform-from-scratch-to-solve-polynomial-multiplication-8018d511162f)
|
||||||
* has application in use case scenario where a user wants to find points of a function
|
is an algorithm that computes the
|
||||||
* in short period time by just using the coefficents of the polynomial function.
|
* discrete Fourier transform (DFT) of a sequence , or its inverse (IDFT) , this
|
||||||
|
algorithm
|
||||||
|
* has application in use case scenario where a user wants to find points of a
|
||||||
|
function
|
||||||
|
* in short period time by just using the coefficents of the polynomial
|
||||||
|
function.
|
||||||
* @details
|
* @details
|
||||||
* https://medium.com/@aiswaryamathur/understanding-fast-fourier-transform-from-scratch-to
|
* https://medium.com/@aiswaryamathur/understanding-fast-fourier-transform-from-scratch-to
|
||||||
-solve-polynomial-multiplication-8018d511162f
|
-solve-polynomial-multiplication-8018d511162f
|
||||||
* @author [Ameya Chawla](https://github.com/ameyachawlaggsipu)
|
* @author [Ameya Chawla](https://github.com/ameyachawlaggsipu)
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include <iostream> /// for IO operations
|
#include <cassert> /// for assert
|
||||||
#include <cmath> /// for mathematical-related functions
|
#include <cmath> /// for mathematical-related functions
|
||||||
#include <complex> /// for storing points and coefficents
|
#include <complex> /// for storing points and coefficents
|
||||||
#include <cassert> /// for assert
|
#include <iostream> /// for IO operations
|
||||||
#include <vector> /// for storing test cases
|
#include <vector> /// for storing test cases
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief FastFourierTransform is a recursive function which returns list of complex numbers
|
* @brief FastFourierTransform is a recursive function which returns list of
|
||||||
|
* complex numbers
|
||||||
* @param p List of Coefficents in form of complex numbers
|
* @param p List of Coefficents in form of complex numbers
|
||||||
* @param n Count of elements in list p
|
* @param n Count of elements in list p
|
||||||
* @returns p if n==1
|
* @returns p if n==1
|
||||||
* @returns y if n!=1
|
* @returns y if n!=1
|
||||||
*/
|
*/
|
||||||
std::complex<double>* FastFourierTransform(std::complex<double>*p ,uint64_t n)
|
std::complex<double> *FastFourierTransform(std::complex<double> *p,
|
||||||
{
|
uint64_t n) {
|
||||||
double pi = 2 * asin(1.0); /// Declaring value of pi
|
double pi = 2 * asin(1.0); /// Declaring value of pi
|
||||||
|
|
||||||
if(n==1) return p; ///Base Case To return
|
if (n == 1)
|
||||||
|
return p; /// Base Case To return
|
||||||
|
|
||||||
std::complex<double> om=std::complex<double>(cos(2*pi/n),sin(2*pi/n)); ///Calculating value of omega
|
std::complex<double> om = std::complex<double>(
|
||||||
|
cos(2 * pi / n), sin(2 * pi / n)); /// Calculating value of omega
|
||||||
|
|
||||||
std::complex<double> *pe= new std::complex<double>[n/2]; /// Coefficents of even power
|
auto *pe = new std::complex<double>[n / 2]; /// Coefficents of even power
|
||||||
|
|
||||||
std::complex<double> *po= new std::complex<double>[n/2]; ///Coefficents of odd power
|
auto *po = new std::complex<double>[n / 2]; /// Coefficents of odd power
|
||||||
|
|
||||||
uint64_t k1 = 0, k2 = 0;
|
uint64_t k1 = 0, k2 = 0;
|
||||||
for(uint64_t j=0;j<n;j++)
|
for (uint64_t j = 0; j < n; j++) {
|
||||||
{
|
|
||||||
if (j % 2 == 0) {
|
if (j % 2 == 0) {
|
||||||
pe[k1++] = p[j]; /// Assigning values of even coefficents
|
pe[k1++] = p[j]; /// Assigning values of even coefficents
|
||||||
|
|
||||||
}
|
} else
|
||||||
else po[k2++]=p[j]; ///Assigning value of odd coefficents
|
po[k2++] = p[j]; /// Assigning value of odd coefficents
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
std::complex<double>*ye=FastFourierTransform(pe,n/2);///Recursive Call
|
std::complex<double> *ye =
|
||||||
|
FastFourierTransform(pe, n / 2); /// Recursive Call
|
||||||
|
|
||||||
std::complex<double>*yo=FastFourierTransform(po,n/2);///Recursive Call
|
std::complex<double> *yo =
|
||||||
|
FastFourierTransform(po, n / 2); /// Recursive Call
|
||||||
|
|
||||||
std::complex<double>*y=new std::complex<double>[n];///Final value representation list
|
auto *y = new std::complex<double>[n]; /// Final value representation list
|
||||||
|
|
||||||
|
for (uint64_t i = 0; i < n / 2; i++) {
|
||||||
for(uint64_t i=0;i<n/2;i++)
|
|
||||||
{
|
|
||||||
y[i] = ye[i] + pow(om, i) * yo[i]; /// Updating the first n/2 elements
|
y[i] = ye[i] + pow(om, i) * yo[i]; /// Updating the first n/2 elements
|
||||||
y[i+n/2]=ye[i]-pow(om,i)*yo[i];///Updating the last n/2 elements
|
y[i + n / 2] =
|
||||||
|
ye[i] - pow(om, i) * yo[i]; /// Updating the last n/2 elements
|
||||||
}
|
}
|
||||||
delete[] ye;
|
delete[] ye;
|
||||||
delete[] yo;
|
delete[] yo;
|
||||||
delete[] pe;
|
delete[] pe;
|
||||||
delete[] po;
|
delete[] po;
|
||||||
return y; /// Returns the list
|
return y; /// Returns the list
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@ -76,40 +81,41 @@ std::complex<double>* FastFourierTransform(std::complex<double>*p ,uint64_t n)
|
|||||||
static void test() {
|
static void test() {
|
||||||
/* descriptions of the following test */
|
/* descriptions of the following test */
|
||||||
|
|
||||||
std::complex<double> *t1= new std::complex<double>[2];///Test case 1
|
auto *t1 = new std::complex<double>[2]; /// Test case 1
|
||||||
t1[0] = {1, 0};
|
t1[0] = {1, 0};
|
||||||
t1[1] = {2, 0};
|
t1[1] = {2, 0};
|
||||||
|
|
||||||
std::complex<double> *t2=new std::complex<double>[4];///Test case 2
|
auto *t2 = new std::complex<double>[4]; /// Test case 2
|
||||||
t2[0] = {1, 0};
|
t2[0] = {1, 0};
|
||||||
t2[1] = {2, 0};
|
t2[1] = {2, 0};
|
||||||
t2[2] = {3, 0};
|
t2[2] = {3, 0};
|
||||||
t2[3] = {4, 0};
|
t2[3] = {4, 0};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
uint8_t n1 = sizeof(t1) / sizeof(std::complex<double>);
|
uint8_t n1 = sizeof(t1) / sizeof(std::complex<double>);
|
||||||
uint8_t n2 = sizeof(t2) / sizeof(std::complex<double>);
|
uint8_t n2 = sizeof(t2) / sizeof(std::complex<double>);
|
||||||
|
|
||||||
|
std::vector<std::complex<double>> r1 = {
|
||||||
|
{3, 0}, {-1, 0}}; /// True Answer for test case 1
|
||||||
|
|
||||||
std::vector<std::complex<double>> r1={{3,0},{-1,0} };///True Answer for test case 1
|
std::vector<std::complex<double>> r2 = {
|
||||||
|
{10, 0}, {-2, -2}, {-2, 0}, {-2, 2}}; /// True Answer for test case 2
|
||||||
std::vector<std::complex<double>> r2={{10,0},{-2,-2},{-2,0},{-2,2} };///True Answer for test case 2
|
|
||||||
|
|
||||||
|
|
||||||
std::complex<double> *o1 = FastFourierTransform(t1, n1);
|
std::complex<double> *o1 = FastFourierTransform(t1, n1);
|
||||||
std::complex<double> *o2 = FastFourierTransform(t2, n2);
|
std::complex<double> *o2 = FastFourierTransform(t2, n2);
|
||||||
|
|
||||||
|
for (uint8_t i = 0; i < n1; i++) {
|
||||||
for(uint8_t i=0;i<n1;i++)
|
assert((r1[i].real() - o1->real() < 0.000000000001) &&
|
||||||
{
|
(r1[i].imag() - o1->imag() <
|
||||||
assert((r1[i].real()-o1->real()<0.000000000001 ) && (r1[i].imag()-o1->imag()<0.000000000001 ));/// Comparing for both real and imaginary values for test case 1
|
0.000000000001)); /// Comparing for both real and imaginary
|
||||||
|
/// values for test case 1
|
||||||
o1++;
|
o1++;
|
||||||
}
|
}
|
||||||
|
|
||||||
for(uint8_t i=0;i<n2;i++)
|
for (uint8_t i = 0; i < n2; i++) {
|
||||||
{
|
assert((r2[i].real() - o2->real() < 0.000000000001) &&
|
||||||
assert((r2[i].real()-o2->real()<0.000000000001 ) && ( r2[i].imag()-o2->imag()<0.000000000001 ));/// Comparing for both real and imaginary values for test case 2
|
(r2[i].imag() - o2->imag() <
|
||||||
|
0.000000000001)); /// Comparing for both real and imaginary
|
||||||
|
/// values for test case 2
|
||||||
o2++;
|
o2++;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -117,7 +123,6 @@ static void test() {
|
|||||||
delete[] o2;
|
delete[] o2;
|
||||||
delete[] t1;
|
delete[] t1;
|
||||||
delete[] t2;
|
delete[] t2;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@ -127,8 +132,7 @@ static void test() {
|
|||||||
* calls automated test function to test the working of fast fourier transform.
|
* calls automated test function to test the working of fast fourier transform.
|
||||||
* @returns 0 on exit
|
* @returns 0 on exit
|
||||||
*/
|
*/
|
||||||
int main(int argc, char const *argv[])
|
int main(int argc, char const *argv[]) {
|
||||||
{
|
|
||||||
test(); // run self-test implementations
|
test(); // run self-test implementations
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user