mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
feat: add k-nearest neighbors algorithm (#2416)
* feat: add k-nearest neighbors, class Knn
* updating DIRECTORY.md
* clang-format and clang-tidy fixes for 8dfacfdf
* fix: comments in k-nearest neighbors
* test: add more tests for k-nearest-neighbors algorithm
* fix: description of k-nearest neighbors algorithm
* chore: apply suggestions from code review
---------
Co-authored-by: github-actions[bot] <github-actions@users.noreply.github.com>
Co-authored-by: David Leal <halfpacho@gmail.com>
This commit is contained in:
parent
b89d1da2f1
commit
a8af29bf65
@ -168,6 +168,7 @@
|
|||||||
## Machine Learning
|
## Machine Learning
|
||||||
* [A Star Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/machine_learning/a_star_search.cpp)
|
* [A Star Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/machine_learning/a_star_search.cpp)
|
||||||
* [Adaline Learning](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/machine_learning/adaline_learning.cpp)
|
* [Adaline Learning](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/machine_learning/adaline_learning.cpp)
|
||||||
|
* [K Nearest Neighbors](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/machine_learning/k_nearest_neighbors.cpp)
|
||||||
* [Kohonen Som Topology](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/machine_learning/kohonen_som_topology.cpp)
|
* [Kohonen Som Topology](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/machine_learning/kohonen_som_topology.cpp)
|
||||||
* [Kohonen Som Trace](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/machine_learning/kohonen_som_trace.cpp)
|
* [Kohonen Som Trace](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/machine_learning/kohonen_som_trace.cpp)
|
||||||
* [Neural Network](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/machine_learning/neural_network.cpp)
|
* [Neural Network](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/machine_learning/neural_network.cpp)
|
||||||
|
196
machine_learning/k_nearest_neighbors.cpp
Normal file
196
machine_learning/k_nearest_neighbors.cpp
Normal file
@ -0,0 +1,196 @@
|
|||||||
|
/**
|
||||||
|
* @file
|
||||||
|
* @brief Implementation of [K-Nearest Neighbors algorithm]
|
||||||
|
* (https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm).
|
||||||
|
* @author [Luiz Carlos Cosmi Filho](https://github.com/luizcarloscf)
|
||||||
|
* @details K-nearest neighbors algorithm, also known as KNN or k-NN, is a
|
||||||
|
* supervised learning classifier, which uses proximity to make classifications.
|
||||||
|
* This implementantion uses the Euclidean Distance as distance metric to find
|
||||||
|
* the K-nearest neighbors.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <algorithm> /// for std::transform and std::sort
|
||||||
|
#include <cassert> /// for assert
|
||||||
|
#include <cmath> /// for std::pow and std::sqrt
|
||||||
|
#include <iostream> /// for std::cout
|
||||||
|
#include <numeric> /// for std::accumulate
|
||||||
|
#include <unordered_map> /// for std::unordered_map
|
||||||
|
#include <vector> /// for std::vector
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @namespace machine_learning
|
||||||
|
* @brief Machine learning algorithms
|
||||||
|
*/
|
||||||
|
namespace machine_learning {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @namespace k_nearest_neighbors
|
||||||
|
* @brief Functions for the [K-Nearest Neighbors algorithm]
|
||||||
|
* (https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm) implementation
|
||||||
|
*/
|
||||||
|
namespace k_nearest_neighbors {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Compute the Euclidean distance between two vectors.
|
||||||
|
*
|
||||||
|
* @tparam T typename of the vector
|
||||||
|
* @param a first unidimentional vector
|
||||||
|
* @param b second unidimentional vector
|
||||||
|
* @return double scalar representing the Euclidean distance between provided
|
||||||
|
* vectors
|
||||||
|
*/
|
||||||
|
template <typename T>
|
||||||
|
double euclidean_distance(const std::vector<T>& a, const std::vector<T>& b) {
|
||||||
|
std::vector<double> aux;
|
||||||
|
std::transform(a.begin(), a.end(), b.begin(), std::back_inserter(aux),
|
||||||
|
[](T x1, T x2) { return std::pow((x1 - x2), 2); });
|
||||||
|
aux.shrink_to_fit();
|
||||||
|
return std::sqrt(std::accumulate(aux.begin(), aux.end(), 0.0));
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief K-Nearest Neighbors (Knn) class using Euclidean distance as
|
||||||
|
* distance metric.
|
||||||
|
*/
|
||||||
|
class Knn {
|
||||||
|
private:
|
||||||
|
std::vector<std::vector<double>> X_{}; ///< attributes vector
|
||||||
|
std::vector<int> Y_{}; ///< labels vector
|
||||||
|
|
||||||
|
public:
|
||||||
|
/**
|
||||||
|
* @brief Construct a new Knn object.
|
||||||
|
* @details Using lazy-learning approch, just holds in memory the dataset.
|
||||||
|
* @param X attributes vector
|
||||||
|
* @param Y labels vector
|
||||||
|
*/
|
||||||
|
explicit Knn(std::vector<std::vector<double>>& X, std::vector<int>& Y)
|
||||||
|
: X_(X), Y_(Y){};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Copy Constructor for class Knn.
|
||||||
|
*
|
||||||
|
* @param model instance of class to be copied
|
||||||
|
*/
|
||||||
|
Knn(const Knn& model) = default;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Copy assignment operator for class Knn
|
||||||
|
*/
|
||||||
|
Knn& operator=(const Knn& model) = default;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Move constructor for class Knn
|
||||||
|
*/
|
||||||
|
Knn(Knn&&) = default;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Move assignment operator for class Knn
|
||||||
|
*/
|
||||||
|
Knn& operator=(Knn&&) = default;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Destroy the Knn object
|
||||||
|
*/
|
||||||
|
~Knn() = default;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Classify sample.
|
||||||
|
* @param sample sample
|
||||||
|
* @param k number of neighbors
|
||||||
|
* @return int label of most frequent neighbors
|
||||||
|
*/
|
||||||
|
int predict(std::vector<double>& sample, int k) {
|
||||||
|
std::vector<int> neighbors;
|
||||||
|
std::vector<std::pair<double, int>> distances;
|
||||||
|
for (size_t i = 0; i < this->X_.size(); ++i) {
|
||||||
|
auto current = this->X_.at(i);
|
||||||
|
auto label = this->Y_.at(i);
|
||||||
|
auto distance = euclidean_distance(current, sample);
|
||||||
|
distances.emplace_back(distance, label);
|
||||||
|
}
|
||||||
|
std::sort(distances.begin(), distances.end());
|
||||||
|
for (int i = 0; i < k; i++) {
|
||||||
|
auto label = distances.at(i).second;
|
||||||
|
neighbors.push_back(label);
|
||||||
|
}
|
||||||
|
std::unordered_map<int, int> frequency;
|
||||||
|
for (auto neighbor : neighbors) {
|
||||||
|
++frequency[neighbor];
|
||||||
|
}
|
||||||
|
std::pair<int, int> predicted;
|
||||||
|
predicted.first = -1;
|
||||||
|
predicted.second = -1;
|
||||||
|
for (auto& kv : frequency) {
|
||||||
|
if (kv.second > predicted.second) {
|
||||||
|
predicted.second = kv.second;
|
||||||
|
predicted.first = kv.first;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return predicted.first;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace k_nearest_neighbors
|
||||||
|
} // namespace machine_learning
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Self-test implementations
|
||||||
|
* @returns void
|
||||||
|
*/
|
||||||
|
static void test() {
|
||||||
|
std::cout << "------- Test 1 -------" << std::endl;
|
||||||
|
std::vector<std::vector<double>> X1 = {{0.0, 0.0}, {0.25, 0.25},
|
||||||
|
{0.0, 0.5}, {0.5, 0.5},
|
||||||
|
{1.0, 0.5}, {1.0, 1.0}};
|
||||||
|
std::vector<int> Y1 = {1, 1, 1, 1, 2, 2};
|
||||||
|
auto model1 = machine_learning::k_nearest_neighbors::Knn(X1, Y1);
|
||||||
|
std::vector<double> sample1 = {1.2, 1.2};
|
||||||
|
std::vector<double> sample2 = {0.1, 0.1};
|
||||||
|
std::vector<double> sample3 = {0.1, 0.5};
|
||||||
|
std::vector<double> sample4 = {1.0, 0.75};
|
||||||
|
assert(model1.predict(sample1, 2) == 2);
|
||||||
|
assert(model1.predict(sample2, 2) == 1);
|
||||||
|
assert(model1.predict(sample3, 2) == 1);
|
||||||
|
assert(model1.predict(sample4, 2) == 2);
|
||||||
|
std::cout << "... Passed" << std::endl;
|
||||||
|
std::cout << "------- Test 2 -------" << std::endl;
|
||||||
|
std::vector<std::vector<double>> X2 = {
|
||||||
|
{0.0, 0.0, 0.0}, {0.25, 0.25, 0.0}, {0.0, 0.5, 0.0}, {0.5, 0.5, 0.0},
|
||||||
|
{1.0, 0.5, 0.0}, {1.0, 1.0, 0.0}, {1.0, 1.0, 1.0}, {1.5, 1.5, 1.0}};
|
||||||
|
std::vector<int> Y2 = {1, 1, 1, 1, 2, 2, 3, 3};
|
||||||
|
auto model2 = machine_learning::k_nearest_neighbors::Knn(X2, Y2);
|
||||||
|
std::vector<double> sample5 = {1.2, 1.2, 0.0};
|
||||||
|
std::vector<double> sample6 = {0.1, 0.1, 0.0};
|
||||||
|
std::vector<double> sample7 = {0.1, 0.5, 0.0};
|
||||||
|
std::vector<double> sample8 = {1.0, 0.75, 1.0};
|
||||||
|
assert(model2.predict(sample5, 2) == 2);
|
||||||
|
assert(model2.predict(sample6, 2) == 1);
|
||||||
|
assert(model2.predict(sample7, 2) == 1);
|
||||||
|
assert(model2.predict(sample8, 2) == 3);
|
||||||
|
std::cout << "... Passed" << std::endl;
|
||||||
|
std::cout << "------- Test 3 -------" << std::endl;
|
||||||
|
std::vector<std::vector<double>> X3 = {{0.0}, {1.0}, {2.0}, {3.0},
|
||||||
|
{4.0}, {5.0}, {6.0}, {7.0}};
|
||||||
|
std::vector<int> Y3 = {1, 1, 1, 1, 2, 2, 2, 2};
|
||||||
|
auto model3 = machine_learning::k_nearest_neighbors::Knn(X3, Y3);
|
||||||
|
std::vector<double> sample9 = {0.5};
|
||||||
|
std::vector<double> sample10 = {2.9};
|
||||||
|
std::vector<double> sample11 = {5.5};
|
||||||
|
std::vector<double> sample12 = {7.5};
|
||||||
|
assert(model3.predict(sample9, 3) == 1);
|
||||||
|
assert(model3.predict(sample10, 3) == 1);
|
||||||
|
assert(model3.predict(sample11, 3) == 2);
|
||||||
|
assert(model3.predict(sample12, 3) == 2);
|
||||||
|
std::cout << "... Passed" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Main function
|
||||||
|
* @param argc commandline argument count (ignored)
|
||||||
|
* @param argv commandline array of arguments (ignored)
|
||||||
|
* @return int 0 on exit
|
||||||
|
*/
|
||||||
|
int main(int argc, char* argv[]) {
|
||||||
|
test(); // run self-test implementations
|
||||||
|
return 0;
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user