mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
feat: a different implementation of checking bipartite-ness of a graph (#1769)
* feat: a different implementation of checking bipartite-ness of a graph * updating DIRECTORY.md * fix: code formatter error * fix: requested changes * fix: request changes * fix : requested changed * pass parameters by reference * pass parameters by reference * fix : visited to pointer * fix : line length below 80 chars Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: David Leal <halfpacho@gmail.com> Co-authored-by: Ayaan Khan <ayaankhan98@gmail.com>
This commit is contained in:
parent
050c99eb0a
commit
a9312b3901
@ -124,6 +124,7 @@
|
||||
* [Hamiltons Cycle](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/hamiltons_cycle.cpp)
|
||||
* [Hopcroft Karp](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/hopcroft_karp.cpp)
|
||||
* [Is Graph Bipartite](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/is_graph_bipartite.cpp)
|
||||
* [Is Graph Bipartite2](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/is_graph_bipartite2.cpp)
|
||||
* [Kosaraju](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/kosaraju.cpp)
|
||||
* [Kruskal](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/kruskal.cpp)
|
||||
* [Lowest Common Ancestor](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/graph/lowest_common_ancestor.cpp)
|
||||
|
134
graph/is_graph_bipartite2.cpp
Normal file
134
graph/is_graph_bipartite2.cpp
Normal file
@ -0,0 +1,134 @@
|
||||
/**
|
||||
* @brief Check whether a given graph is bipartite or not
|
||||
* @details
|
||||
* A bipartite graph is the one whose nodes can be divided into two
|
||||
* disjoint sets in such a way that the nodes in a set are not
|
||||
* connected to each other at all, i.e. no intra-set connections.
|
||||
* The only connections that exist are that of inter-set,
|
||||
* i.e. the nodes from one set are connected to a subset of nodes
|
||||
* in the other set.
|
||||
* In this implementation, using a graph in the form of adjacency
|
||||
* list, check whether the given graph is a bipartite or not.
|
||||
*
|
||||
* References used: [GeeksForGeeks](https://www.geeksforgeeks.org/bipartite-graph/)
|
||||
* @author [tushar2407](https://github.com/tushar2407)
|
||||
*/
|
||||
#include <iostream> /// for IO operations
|
||||
#include <queue> /// for queue data structure
|
||||
#include <vector> /// for vector data structure
|
||||
#include <cassert> /// for assert
|
||||
|
||||
/**
|
||||
* @namespace graph
|
||||
* @brief Graphical algorithms
|
||||
*/
|
||||
namespace graph {
|
||||
/**
|
||||
* @brief function to check whether the passed graph is bipartite or not
|
||||
* @param graph is a 2D matrix whose rows or the first index signify the node
|
||||
* and values in that row signify the nodes it is connected to
|
||||
* @param index is the valus of the node currently under observation
|
||||
* @param visited is the vector which stores whether a given node has been
|
||||
* traversed or not yet
|
||||
* @returns boolean
|
||||
*/
|
||||
bool checkBipartite(
|
||||
const std::vector<std::vector<int64_t>> &graph,
|
||||
int64_t index,
|
||||
std::vector<int64_t> *visited
|
||||
)
|
||||
{
|
||||
std::queue<int64_t> q; ///< stores the neighbouring node indexes in squence
|
||||
/// of being reached
|
||||
q.push(index); /// insert the current node into the queue
|
||||
(*visited)[index] = 1; /// mark the current node as travelled
|
||||
while(q.size())
|
||||
{
|
||||
int64_t u = q.front();
|
||||
q.pop();
|
||||
for(uint64_t i=0;i<graph[u].size();i++)
|
||||
{
|
||||
int64_t v = graph[u][i]; ///< stores the neighbour of the current node
|
||||
if(!(*visited)[v]) /// check whether the neighbour node is
|
||||
/// travelled already or not
|
||||
{
|
||||
(*visited)[v] = ((*visited)[u]==1)?-1:1; /// colour the neighbouring node with
|
||||
/// different colour than the current node
|
||||
q.push(v); /// insert the neighbouring node into the queue
|
||||
}
|
||||
else if((*visited)[v] == (*visited)[u]) /// if both the current node and its neighbour
|
||||
/// has the same state then it is not a bipartite graph
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true; /// return true when all the connected nodes of the current
|
||||
/// nodes are travelled and satisify all the above conditions
|
||||
}
|
||||
/**
|
||||
* @brief returns true if the given graph is bipartite else returns false
|
||||
* @param graph is a 2D matrix whose rows or the first index signify the node
|
||||
* and values in that row signify the nodes it is connected to
|
||||
* @returns booleans
|
||||
*/
|
||||
bool isBipartite(const std::vector<std::vector<int64_t>> &graph)
|
||||
{
|
||||
std::vector<int64_t> visited(graph.size()); ///< stores boolean values
|
||||
/// which signify whether that node had been visited or not
|
||||
|
||||
for(uint64_t i=0;i<graph.size();i++)
|
||||
{
|
||||
if(!visited[i]) /// if the current node is not visited then check
|
||||
/// whether the sub-graph of that node is a bipartite or not
|
||||
{
|
||||
if(!checkBipartite(graph, i, &visited))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
} // namespace graph
|
||||
|
||||
/**
|
||||
* @brief Self-test implementations
|
||||
* @returns void
|
||||
*/
|
||||
static void test()
|
||||
{
|
||||
std::vector<std::vector<int64_t>> graph = {
|
||||
{1,3},
|
||||
{0,2},
|
||||
{1,3},
|
||||
{0,2}
|
||||
};
|
||||
|
||||
assert(graph::isBipartite(graph) == true); /// check whether the above
|
||||
/// defined graph is indeed bipartite
|
||||
|
||||
std::vector<std::vector<int64_t>> graph_not_bipartite = {
|
||||
{1,2,3},
|
||||
{0,2},
|
||||
{0,1,3},
|
||||
{0,2}
|
||||
};
|
||||
|
||||
assert(graph::isBipartite(graph_not_bipartite) == false); /// check whether
|
||||
/// the above defined graph is indeed bipartite
|
||||
std::cout << "All tests have successfully passed!\n";
|
||||
}
|
||||
/**
|
||||
* @brief Main function
|
||||
* Instantitates a dummy graph of a small size with
|
||||
* a few edges between random nodes.
|
||||
* On applying the algorithm, it checks if the instantiated
|
||||
* graph is bipartite or not.
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main()
|
||||
{
|
||||
test(); // run self-test implementations
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user